
Clean Code
Homicidal Maniacs Read Code, Too

Presented by Jeremy Clark
www.jeremybytes.com



What is Clean Code?

• Readable

• Maintainable

• Testable

• Elegant

©Jeremy Clark 2015



Why Do We Care?

There’s no such thing 
as write-once code

©Jeremy Clark 2015



http://geekandpoke.typepad.com/geekandpoke/2012/03/thank-god-not-everything-is-software.html



Why Do We Care?

There’s no such thing
as write-once code

• Bug Fixes

• Business Changes

• Enhancements

• New Functionality

©Jeremy Clark 2015



What Prevents Clean Code?

• Ignorance

• Stubbornness

• Short-Timer Syndrome

•Arrogance

• Job Security

• Scheduling

©Jeremy Clark 2015



What Prevents Clean Code?

Number one reason:

“I’ll clean it up later.”

Pro Tip: “Later” never comes.

©Jeremy Clark 2015



The Truth about Clean Code

•Clean Code saves time.

•We can’t take a short-term view of software.

•We need to look at the lifespan of the 
application. 

©Jeremy Clark 2015



How Do You Write Clean Code?

• Rule of Thumb:

Imagine that the developer 
who comes after you 
is a homicidal maniac 

who knows where you live.
-Unknown

©Jeremy Clark 2015



The Next 
Developer

©Jeremy Clark 2015

Json



This Might
Take Awhile

©Jeremy Clark 2015



The Problem

• Readable (by mere mortals)

• Maintainable

• Testable

• Elegant

All of these qualities are subjective.

©Jeremy Clark 2015



©Jeremy Clark 2015

Robert C. Martin Michael C. Feathers



The Dry Principle

Don’t Repeat Yourself

• copy/pasta = spaghetti code

©Jeremy Clark 2015



Naming

©Jeremy Clark 2015



Intentional Naming

•theList
• Not very good

•ProductList
• A bit better

•ProductCatalog
• Good

©Jeremy Clark 2015



Naming

• Use Nouns for Variables, Properties, Parameters
• indexer, currentUser, PriceFilter

• Use Verbs for Methods and Functions
• SaveOrder(), getDiscounts(), RunPayroll()

• Pronounceable and Unambiguous
• recdptrl = received patrol? record department role?

©Jeremy Clark 2015



Naming Standard

• Camel Case?

• Pascal Case?

• Lower Case with Underscores?

It doesn’t matter

Have a Standard
Be Consistent

©Jeremy Clark 2015



Comments

©Jeremy Clark 2015



Comments

• Rule #1: Comments lie
• Code is updated or moved, but not the comments

©Jeremy Clark 2015



Comments Lie

©Jeremy Clark 2015



Comments

• Rule #1: Comments lie
• Code is updated or moved, but not the comments

• Rule #2: Comments do not make up for bad code
• If the code is that unclear, rewrite the code

©Jeremy Clark 2015



Good Comments

• Can be used to describe intent or clarification
• Ex: // Sample input: Oct 5, 2015 - 13:54:15 PDT

• Can be used to give warnings or consequences
• Ex: // We do a deep copy of this collection to make 

// sure that updates to one copy do not affect
// the other

©Jeremy Clark 2015



Good Comments

• Can be used for TODOs
• Especially useful when the IDE supports it

• These should be temporary

©Jeremy Clark 2015



Bad Comments

• Avoid “journaling” comments
• Ex: // 03/20/1996 - jjc - Added tax calculation

• This is what source control is for: Who, What, When

©Jeremy Clark 2015



Know 
Your 

Tools

©Jeremy Clark 2015



Bad Comments

• Avoid “journaling” comments
• Ex: // 03/20/1996 - jjc - Added tax calculation

• This is what source control is for: Who, What, When

• Avoid “noise” comments
• Ex: // Default constructor

©Jeremy Clark 2015



Bad Comments

• Do not comment out code
• Code no longer in use should be deleted

• If needed, you can always retrieve it from source control

©Jeremy Clark 2015



Know 
Your 

Tools

©Jeremy Clark 2015



Functions and Methods

©Jeremy Clark 2015



Functions and Methods

• Keep methods short

• Should fit on a single screen

• Prefer methods no longer than 10 lines

Do one thing!

©Jeremy Clark 2015



Multiple Levels of Methods

•High level 
• Overview of functionality

•Mid-level
• More details, but not too deep

•Detail
• The “weeds” of the functionality

©Jeremy Clark 2015



Work in Small Chunks

If you aren’t writing incremental code,

you are writing excremental code.

©Jeremy Clark 2015



What is Refactoring?

Making code better 

without changing the functionality

©Jeremy Clark 2015



Refactoring and Unit Testing

• If you don’t have unit tests, 
you don’t know what your code does.

• Refactoring Step 1:

• Bring your code under test.

• Refactoring Step 2:

• Safely and confidently update the code.

©Jeremy Clark 2015



The Watcher

©Jeremy Clark 2015

Json



Making Code Cleaner

©Jeremy Clark 2015



Be a Clean Code Advocate

The Boy Scout Rule

Always leave the campground 
cleaner than you found it.

The Clean Coder Rule

Always leave the code 
cleaner than you found it.

©Jeremy Clark 2015



Thank You!

Jeremy Clark

• http://www.jeremybytes.com

• jeremy@jeremybytes.com

• @jeremybytes

©Jeremy Clark 2015


