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What is Clean Code?

• Readable

• Maintainable

• Testable

• Elegant
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Why Do We Care?

There’s no such thing 
as write-once code
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http://geekandpoke.typepad.com/geekandpoke/2012/03/thank-god-not-everything-is-software.html



Why Do We Care?

There’s no such thing
as write-once code

• Bug Fixes

• Business Changes

• Enhancements

• New Functionality
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What Prevents Clean Code?

• Ignorance

• Stubbornness

• Short-Timer Syndrome

•Arrogance

• Job Security

• Scheduling
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What Prevents Clean Code?

Number one reason:

“I’ll clean it up later.”

Pro Tip: “Later” never comes.
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The Truth about Clean Code

•Clean Code saves time.

•We can’t take a short-term view of software.

•We need to look at the lifespan of the 
application. 
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How Do You Write Clean Code?

• Rule of Thumb:

Imagine that the developer 
who comes after you 
is a homicidal maniac 

who knows where you live.
-Unknown
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The Next 
Developer
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This Might
Take Awhile
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The Problem

• Readable (by mere mortals)

• Maintainable

• Testable

• Elegant

All of these qualities are subjective.
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The Dry Principle

Don’t Repeat Yourself

• copy/pasta = spaghetti code

©Jeremy Clark 2015



Naming
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Intentional Naming

•theList
• Not very good

•ProductList
• A bit better

•ProductCatalog
• Good
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Naming

• Use Nouns for Variables, Properties, Parameters
• indexer, currentUser, PriceFilter

• Use Verbs for Methods and Functions
• SaveOrder(), getDiscounts(), RunPayroll()

• Pronounceable and Unambiguous
• recdptrl = received patrol? record department role?
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Naming Standard

• Camel Case?

• Pascal Case?

• Lower Case with Underscores?

It doesn’t matter

Have a Standard
Be Consistent
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Comments
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Comments

• Rule #1: Comments lie
• Code is updated or moved, but not the comments
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Comments Lie

©Jeremy Clark 2015



Comments

• Rule #1: Comments lie
• Code is updated or moved, but not the comments

• Rule #2: Comments do not make up for bad code
• If the code is that unclear, rewrite the code
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Good Comments

• Can be used to describe intent or clarification
• Ex: // Sample input: Oct 5, 2015 - 13:54:15 PDT

• Can be used to give warnings or consequences
• Ex: // We do a deep copy of this collection to make 

// sure that updates to one copy do not affect
// the other
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Good Comments

• Can be used for TODOs
• Especially useful when the IDE supports it

• These should be temporary
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Bad Comments

• Avoid “journaling” comments
• Ex: // 03/20/1996 - jjc - Added tax calculation

• This is what source control is for: Who, What, When
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Know 
Your 

Tools
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Bad Comments

• Avoid “journaling” comments
• Ex: // 03/20/1996 - jjc - Added tax calculation

• This is what source control is for: Who, What, When

• Avoid “noise” comments
• Ex: // Default constructor
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Bad Comments

• Do not comment out code
• Code no longer in use should be deleted

• If needed, you can always retrieve it from source control
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Know 
Your 

Tools
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Functions and Methods
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Functions and Methods

• Keep methods short

• Should fit on a single screen

• Prefer methods no longer than 10 lines

Do one thing!
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Multiple Levels of Methods

•High level 
• Overview of functionality

•Mid-level
• More details, but not too deep

•Detail
• The “weeds” of the functionality
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Work in Small Chunks

If you aren’t writing incremental code,

you are writing excremental code.
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What is Refactoring?

Making code better 

without changing the functionality
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Refactoring and Unit Testing

• If you don’t have unit tests, 
you don’t know what your code does.

• Refactoring Step 1:

• Bring your code under test.

• Refactoring Step 2:

• Safely and confidently update the code.
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The Watcher
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Making Code Cleaner
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Be a Clean Code Advocate

The Boy Scout Rule

Always leave the campground 
cleaner than you found it.

The Clean Coder Rule

Always leave the code 
cleaner than you found it.
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Thank You!

Jeremy Clark

• http://www.jeremybytes.com

• jeremy@jeremybytes.com

• @jeremybytes
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