Clean Code

Homicidal Maniacs Read Code, Too

Presented by Jeremy Clark — ==
www .jeremybytes.com

h
What is Clean Code®?

 Readable

« Maintainable
« Testable

* Elegant

©lJeremy Clark 2015

Why Do We Care?

There’s no such thing
Qs write-once code

ayod g ¥eab

Thank god not everything is software

http://geekandpoke.typepad.com/geekandpoke/2012/03/thank-god-not-everything-is-software.html

/’ﬁ“
Why Do We Caree

There's no such thing -BugFixes

as write-once code Business Changes
* Enhancements

» New Functionality

What Prevents Clean Codeve

*|gnorance * Arrogance
« Sfubbornness « JOb Security

* Short-Timer Syndrome «Scheduling

/’—*—“

What Prevents Clean Codeve

Number one reason:

“I'll clean 1t up later.”

Pro Tip: “Later” never comes.

e T—
The Truth about Clean Code

 Clean Code saves time.

 We can't take a short-term view of software.

* We need to look at the lifespan of the
application.

How Do You Write Clean Code®@¢

* Rule of Thumb:

Imagine that the developer
who comes after you
IS a homicidal maniac
who knows where you live.

-Unknown

©Jeremy Clark 2015

The Next
Developer

©lJeremy Clark 2015

|
This Might |
Take Awhile

The Problem

» Readable (by mere mortals)
* Maintainable

» Testable

* Elegant

All of these qualities are subjective.

Jeremy Clark 2015

obert C. Martin Michael C. Feathers

Robert C. Martin Series‘___
L ‘-"4;'-~ (117" 17 v . 1
< g — -

Robert C. Martin Series

Clean Code

A Handbook of Agile Software Craftsmanship

WORKING
i EFFECTIVELY
' WITH

LEGACY CODE

Foreword by James 0. Coplien Robert C. Martin Michael C. Feathers

©lJeremy Clark 2015

The Dry Principle

Don’'t Repeat Yourself

» cOpYy/pasta = spaghetti code

my name is

Bl

HELLO

My name jg

A chog*

26 ' : 4 e e . % g . (

©lJeremy Clark 2015

Intentional Naming

thelist
* Not very good

ProductlList
. A bit better

*ProductCatalog
« Good

©lJeremy Clark 2015

E— T

Nelagligle

» Use Nouns for Variables, Properties, Parameters
 indexer, currentUser, PriceFilter

» Use Verbs for Methods and Functions
* SaveOrder(), getDiscounts(), RunPayroll()

* Pronounceable and Unambiguous
* recdptrl =received patrole record deparfiment rolee

©Jeremy Clark 2015

/’—*‘
Naming Standard

e Camel Case@e
 Pascal Case@¢
e Llower Case with Underscores@

It doesn’'t matter

Have a Standard
Be Consistent

‘,—“

Comments

// Determine if End of Day Time for Last Date
// has been reached
// It Last Date is null use Converted Date

// Based on Today's Date > Last Date
// And Curr Time >= End of Day Time

©Jeremy Clark 2015

T

Comments

* Rule #1: Comments lie
« Code is updated or moved, but not the comments

©lJeremy Clark 2015

Comments Lie

Basmati Rice

©lJeremy Clark 2015

Comments

* Rule #1: Comments lie
 Code is updated or moved, but hot the comments

* Rule #2: Comments do not make up for bad code
 If the code is that unclear, rewrite the code

©lJeremy Clark 2015

Good Comments

« Can be used to describe intent or clarification
« Ex: // Sample input: Oct 5, 2015 - 13:54:15 PDT

« Can be used to give warnings or consequences

* Ex: // We do a deep copy of this collection to make
// sure that updates to one copy do not affect
// tThe other

©Jeremy Clark 2015

Good Comments

« Can be used for TODOs

» Especially useful when the IDE supports it
* These should be temporary

©lJeremy Clark 2015

Bad Comments

» Avoid “journaling” comments
« Ex: // 03/20/1996 - jjc - Added tax calculation
* This is what source control is for: Who, What, When

©lJeremy Clark 2015

7o)
o
N
~
—
o
@)
>~
&
o
(]
3
©

Bad Comments

* Avoid “journaling” comments
« Ex: // 03/20/1996 - jjc - Added tax calculation
* This is what source control is for: Who, What, When

 Avoid “noise” comments
e Ex: // Default constructor

©lJeremy Clark 2015

Bad Comments

DO not comment out code
« Code no longer in use should be deleted
* If needed, you can always retrieve it from source control

©lJeremy Clark 2015

©lJeremy Clark 2015

Functions and Methods

private void DoDataSync()... .|

©Jeremy Clark 2015

/’ﬂ

Functions and Methods

« Keep methods short
« Should fit on a single screen
* Prefer methods no longer than 10 lines

Do one thing!

©lJeremy Clark 2015

/’—*‘
Multiple Levels of Methods

*High level
* Overview of functionality
* Mid-level
* More details, but not foo deep

Detall
* The “weeds” of the functionality

©lJeremy Clark 2015

Work in Small Chunks

If you aren’t writing incremental code,
you are wrifing excremental code.

©lJeremy Clark 2015

What is Refactoringe

Making code better
without changing the functionality

Refactoring and Unit Testing

* If you don’t have unit fests,
you don’'t know what your code does.

» Refactoring Step 1:
* Bring your code under tfest.

» Refactoring Step 2:
» Safely and confidently update the code.

©Jeremy Clark 2015

The Watcher

©lJeremy Clark 2015

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SOL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP
(< s I - P Start - Debug -~ M _tm 5

ERE

Test Explorer CatalogViewModel.cs + X CatalogViewModelTest.cs
dule.Catalog.CatalogViewModel - Prop ange
return _container.Resolve<(a)rder>(“CurrentOrder™);

private I SO vice GetServiceFromC iner()
{
if (! _container.IsRegistered<IPersonSer :>())
throw new Mis i EXCe on(
"IPersonService is not available from the DI Container
return _container.Resolve<IPersonService>();

Services
private void PopulateCatalogFromService() < ShellApplication
{

log = new Lis on>();

var asyncBegin = _service.BeginGetPeople(null, null);
var task = <Person>>.Factory.FromAsync(
asyncBegin, _service.EndGetPeople);

task.ContinueWith(t =>

I

L
_fullPeoplelList = t.Result;
ResetFilterToDefaults();
LastUpdateTime = DateTime.Now;

}, TaskCont LonOptions.NotOnFaulted);

CheckExceptionsFromService(task);
1

100 % Team Ex...

Error List p d Results i esults 3 € ults Data Toc

Ready Ln253 Col 1 Ch1 INS

©Jeremy Clark 2015

Be a Clean Code Advocate

The Boy Scout Rule

Always leave the campground
cleaner than you found it.

The Clean Coder Rule

Always leave the code
cleaner than you found ift.

©Jeremy Clark 2015

Thank You!

Jeremy Clark

 http://www.jeremybytes.com
e leremy@jeremybytes.com
* @jeremybytes

©lJeremy Clark 2015

