
Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 1

Clean Code:
Homicidal Maniacs Read Code, Too

An overview of making code readable and maintainable by JeremyBytes.com

Overview
The world is constantly changing; business processes are constantly changing. Our code needs to

change along with it. This means that we, as developers, are constantly revisiting our code. If we want

our applications to be successful, we need to make sure that they are readable and maintainable. Two

years from now, you probably won’t remember your original intent in a piece of code. Clean code is a

philosophy: We write code in such a way that we don’t have to remember the original intent; the intent

is in the code itself.

Remember, there is no such thing as write-once code. Our code should be prepared for modification.

Today, we’ll look at the qualities of clean code as well as some specific techniques to add those qualities.

Then we’ll spend a bit of time refactoring some existing code to make it easier to understand.

What is Clean Code?
If you ask 10 people what their idea of clean code is, you will get twelve different answers. But you will

probably find several things in common.

Readable

All code is readable by machines (that’s its ultimate purpose, after all). But clean code is readable by

humans. And by humans, I don’t mean the gods of programming; I mean mere mortal programmers.

Maintainable

Clean code has good organization and extensibility points. When we need to go back into the code to

make updates, we can easily find where the updates need to be made. And ideally, we should be able

to make our changes in a single location without needing to make modifications across the entire

codebase.

Testable

In addition to the extensibility points, clean code also has good “seams”. These are places in the code

where we can easily swap out one implementation for another. In our tests, we can swap in fake

objects and focus on isolated pieces of code for testing.

Elegant

There’s something pleasant about reading clean code. When we run across it, we notice a sort of

elegance to the implementation. This doesn’t mean complexity – most of the time we find elegance in

the simplicity of a solution.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 2

 If our code has these properties, then we are prepared for the changes that the world throws at us.

Roadblocks
Clean code sounds like a great thing, right? It’s hard to imagine that anyone would not want it. But

there are a number of attitudes that keep people from actually writing clean code.

Ignorance

“This is the way I was taught to do it.” Some developers just don’t know any better. They were taught

to write code a certain way, and that’s how they do it. This is actually the easiest roadblock to

overcome. Generally, once someone sees the benefits of doing things a little bit differently, he is glad to

try the new techniques.

Stubbornness

“This is the way I’ve always done it.” This attitude is a little bit harder to change. Some people are

reluctant to change. This is especially unfortunate when talking about developers since our industry is

all about change. We have to deal with new technologies all the time. We have to deal with changing

requirements. Change is part of the job.

Short-Timer Syndrome

“I’m just a contractor. I don’t have to deal with this code 6 months from now.” If you ever find a

contractor with this attitude, run the other way. Good developers are always concerned about their

code even after they’re gone. Unfortunately, I’ve seen this attitude in companies that have separate

development and support teams. The developers are concerned with slapping the code together as

quickly as possible and then toss it over to the support team. Again, we want to avoid such short-

sighted views of software.

Arrogance / Job Security

“If you can’t understand my code, then you’re not a good enough to work on it.” Let’s face it, some

developers have superiority complexes. They like it that they are the only ones who can understand a

certain bit of code. It also means that they can’t be easily replaced (or so they think). Not a great

attitude, but we are bound to run across it in our careers.

Scheduling

“There’s no time to make it pretty. Ship it now.” This is one of the biggest misconceptions. Some

people (often non-technical people who haven’t really studied the realities) think that it takes longer to

write clean code. Try to avoid taking the short-term view. Yes, I can slap a system together in a

weekend, but I’ll spend 6 months trying to make it stable and extensible (all while trying to manage

production issues and upset customers). Or I can spend 2 weeks building a stable, extensible system

that is easy to update when the business changes (meaning fewer production issues and more happy

customers).

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 3

Procrastination

“I’ll clean it up later.” This is probably the biggest roadblock to clean code. Developers want to write

good code. They recognize ugly code when they see it. But often, a developer will slap something

together just to get it working. Then they’ll justify releasing it because they will fix it later.

Here’s the reality: Later never comes. There’s always some other task that takes priority. We need to

focus on clean code as we’re writing it.

Clean Code Saves Time
The truth is that clean code saves time in the long run. Bugs hide in the dark places of our code. If the

code is easy to understand, the bugs will have no place to hide, and we’ll be more likely to find them

before release. And we all know that finding bugs before release is 100 times better than finding bugs

after release.

In addition, automated testing is a big part of clean code strategy. If we find the bugs during the

development process – while we’re still thinking about a particular piece of functionality – it will be

easier to fix. Plus, we save the testing team the trouble of finding and logging those bugs.

Readable code is a huge asset in team environments. When code is understandable, any developer on

the team can get quickly up-to-speed on code that he didn’t write himself. This is especially desirable in

Agile groups where no individual owns a piece of code. The code is owned by the team and all

developers are responsible for (and can make changes anywhere in) the entire codebase.

Ultimately, we don’t release perfect code (yes, I know it’s hard to believe). When we have clean code,

it’s easier to fix any bugs that are found after we go into production. This leads to a faster response to

customers and ultimately a better product.

We can’t take a short-term view of software. We need to be thinking about the future.

The Problem with Defining Clean Code
So, we decided that in order to be clean code, our code needs to be readable, maintainable, testable,

and elegant. Now we have to face a problem: all of these qualities are subjective. Readable by whom?

Testable by which methodologies?

I have a rule of thumb that I follow when writing code:

Imagine that the developer who comes after you is a

 homicidal maniac who knows where you live.

This eliminates the tendency toward the short-timer syndrome that we saw above. Think about the

developer who is going to have to maintain and update this code after you’re gone. Now, put yourself

in his shoes.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 4

If you’ve been a developer for any length of time, you’ve probably had to go in to change code that was

written by someone else. Did you end up cursing the whole time? (“What was this moron thinking; this

code is awful!”) Or did you make your updates confidently because the code was easy to understand

and had good unit test coverage?

The reality is that the former is more common; but we’d like it to be the latter. Clean code has to start

somewhere. If we keep the next developer in mind when we’re writing our code, we’re more likely to

write something that’s understandable. Plus, if he really is a homicidal maniac, we want to keep him

happy, right?

Some Guidance
Fortunately for us, there are folks who have written some really

good books to give us guidance to writing clean code. The first of

these is Clean Code: A Handbook of Agile Software Craftsmanship by

Robert C. Martin (Uncle Bob). I posted a review of this book on my

blog: http://jeremybytes.blogspot.com/2012/12/book-review-clean-

code.html.

Clean Code gives a number of specific techniques and things to

watch out for. This book was a little disconcerting to read. It is full

of common sense – things that make you say, “Of course, that’s how

you should write that code. It’s obvious.” But then immediately you

think, “But that’s not how I’ve been doing it. Why haven’t I been

doing it that way?”

So, it’s filled with tons of practical advice (and we’ll be looking at we’ll look at a few specific items here).

In addition, Martin provides a list of code “smells”. A code smell is usually recognized based on your

experience. You look at a piece of code and something doesn’t “smell” right. There’s something wrong

with the code that you might not be able to put your finger on, but it’s there.

Martin gives some concrete advice to recognizing code smells and what can be done to improve the

code.

http://jeremybytes.blogspot.com/2012/12/book-review-clean-code.html
http://jeremybytes.blogspot.com/2012/12/book-review-clean-code.html

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 5

Another great book is Working Effectively with Legacy Code by

Michael C. Feathers. I have a review for this book as well:

http://jeremybytes.blogspot.com/2013/02/book-review-working-

effectively-with.html.

This book is focused on how to make changes to existing (non-clean)

code. It gives techniques on how to bring the legacy code under test

so that we can make changes confidently and ensure that we aren’t

breaking any existing features. If we don’t have tests, then we don’t

really know what the code does. And if we don’t know what the

code does, how can we make changes and know that we didn’t

break anything?

We can’t snap your fingers and make an entire codebase into clean

code. But we can slowly transform an existing project by cleaning up the pieces that we need to make

changes to.

So, let’s look at a few specifics. We can’t cover everything here. I’ve picked out a few things that have

helped me.

The DRY Principle
One extremely important principle is DRY: Don’t Repeat Yourself. Whenever you are tempted to

copy/paste a block of code somewhere else, stop. Copy/Pasta only leads to spaghetti code. Remember:

Don’t Repeat Yourself

Duplication is dangerous. If we fix a bug in a piece of code, it’s highly unlikely that we will look for

copies of that same code in different parts of the application. Another problem is that duplication

hinders readability. If we see the same 5 lines of code over and over again, those lines just become

“noise” that gets in the way of understanding the rest of the code.

If you find that you need the same block of code somewhere else, don’t copy it. Instead, create a new

method to encapsulate that code. Then call that method from multiple places in your application.

But what if we need *almost* the same code in multiple places. We can encapsulate the method and

provide a parameter. The method would behave differently based on this parameter. We can also look

at some more advanced features like using virtual methods to polymorphically change the behavior of a

class.

http://jeremybytes.blogspot.com/2013/02/book-review-working-effectively-with.html
http://jeremybytes.blogspot.com/2013/02/book-review-working-effectively-with.html

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 6

Naming
Many times developers don’t

put enough thought into what

they call things. If we have

something called a1 or a2, what

are we supposed to do with it?

This is where we need to start

thinking about intentional

naming.

Intentional Naming

When we name something in

our code (whether it is a field,

parameter, function, or class) we

want the name to show the

intent of the item. This will help

other developers use the item

correctly.

Let’s take a look at an example. Say we have a property called theList. This name isn’t as bad as a1

because at least it tells us what it is (a collection of something). But it doesn’t tell us anything about the

intent. What am I supposed to use this collection for? It would also be helpful to know what types of

items are in the collection. Is it a list of random objects? A list of employees? This name just doesn’t

tell us enough.

What if we change the property to ProductList? Well, this is a bit better. It tells us what types of

things are in the collection. But we still don’t know the intent. Is this a list of products that appear in a

price list? Is it a list of products that are included for an order? Is it a list of products that we just

received into inventory?

What about ProductCatalog? This is much better. The word “catalog” tells the intent – this is a list

of products that we sell that someone can select from. We’ve got a couple of good things with this

name. First, as mentioned, we have the intent. Next, we know that this is a collection of items (implied

by the word “catalog”). Third, we know what kind of items are in the catalog (products).

The only thing that could make this a bad name is if ProductCatalog actually contained a list of

employees that start their shift on Saturdays (i.e. something other than a catalog of products).

Other Naming Tips

There are some “well, that’s obvious” tips for naming that aren’t always followed. One is to use nouns

for “things” (such as variable, fields, parameters, and classes) and to use action verbs for methods and

functions.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 7

Things can get a little more ambiguous depending on your development environment. In the C# world,

we commonly see properties called things like IsEnabled or IsReadOnly (particularly in the XAML

world). These are somewhere in between because they are technically verbs, but they are verbs of state

rather than verbs of action. Consistency is important. So, if we were to make another property to go

alongside these (such as a property that tells whether the current item can be cached), we should follow

the convention and name it similarly, such as IsCacheable.

Names should also be pronounceable and unambiguous. A name like recdptrl isn’t a real word and it

doesn’t have enough vowels to figure out how to pronounce it (which it difficult to use in conversation).

Plus, what does it mean? Is it “received patrol”? Or maybe “record department role”? It’s okay to spell

it out. Most of us are using IDEs that give us some form of code completion – we don’t have to worry

about having to type long identifiers all the time.

We should also consider using longer names for larger scopes. When we have an application-level

object, it’s going to be around for a while. We will probably be referencing it in a number of different

modules or classes. This means that we want to make sure that the object name makes sense in all of

those different areas. We should think about using a very descriptive name like

CurrentUserSecurityRoles.

With smaller scopes, we can get away with names that are a bit less descriptive. For example, we might

have a method parameter named securityRoles. Since it’s only used within the scope of that

method, it’s much easier to keep track of. And, depending on what the method does, we might not

need the context of “current user”. The method may act on any security roles regardless of whether

they belong to the current user. It all depends on the context.

It is okay to use i as a counter or indexer. So, we don’t need to feel like we need to have a longer

indexer name for a for loop that iterates through an array. We’re shooting for readability here.

Contrast that with using an l (lowercase “L”) as a counter. This would be horrible since in many fonts a

lowercase L looks exactly like the numeral 1.

Naming Standard

So, we’ve looked at quite a few tips about how we select meaningful names. But what about format?

Do we use camel casing (like securityRoles)? Or Pascal casing (i.e. initial caps, like

SecurityRoles)? Or all lowercase with underscores (security_roles)?

The truth is that what format we use really doesn’t matter. But there are 2 things that do matter:

1. Have a Standard

2. Be Consistent

If you don’t already have a formatting standard, come up with one (or use one that someone else

created). This will go a long way toward making your code readable. You can use something like

StyleCop (http://stylecop.codeplex.com/) in Visual Studio to enforce styles and formatting within the

code.

http://stylecop.codeplex.com/

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 8

A brief word about Hungarian Notation: it’s no longer needed. If you aren’t old enough to remember

Hungarian notation, that’s okay. The basic premise is that each identifier has a prefix that tells the type

of the object. For example, you might have “bFlag” to denote that this is a byte. With modern IDEs, we

don’t need this. Our development environment tells us what the types are (assuming we’re using a

strongly-typed language), and the compiler enforces how we use our objects and will error if we try to

use a type incorrectly.

Robert C. Martin takes this a step further and suggests that we should remove prefixes from things like

interfaces. It is a common practice to prefix an interface with a capital I, so we end up with things like

IList or IDisposable. He argues that since the developer who is consuming the API doesn’t need to

make a distinction between the interface and a concrete class (which is exactly the purpose of using

interfaces), there shouldn’t be any distinction in the naming, either.

However, in the .NET world, all of the interfaces in the framework are prefixed with the letter I. In

order to maintain consistency with the environment, we should follow this convention when we are

creating our own interfaces. Again, we’re trying to write code that a developer expects to see – that’s a

key part of maintaining readability.

Comments
Comments can be an asset, but often they are just noise – things that get in the way of looking at the

actual code. There are a number of ways that comments are used incorrectly, and we need to get away

from these.

First Rule: Comments Lie

The reality of the situation is that comments are often incorrect. We move code around or change its

functionality, but we rarely go in to update the comments. This means that many comments are stale

and don’t apply to the current code. Or even worse, they are orphaned and actually apply to code that

has been relocated to a different method or class. This should give us incentive to avoid unnecessary

comments.

Second Rule: Comments Do Not Make Up For Bad Code

Many developers use comments to explain their code. Here’s an example:

 // Determine if End of Day Time for Last Date

 // has been reached

 // If Last Date is null use Converted Date

 // Based on Today's Date > Last Date

 // And Curr Time >= End of Day Time

This is basically pseudo-code (and quite honestly, I don’t really understand it). The problem is that the

developer felt that the code wasn’t understandable, so he added this comment block.

Instead of writing comments to try to make up for bad code, we should focus on making the code

readable. If code is not understandable on its own, it needs to be re-written.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 9

Good Comments

Comments should not tell what the code does (the code should do that). But comments may be used to

give the intent of the code. For example, we may have a fairly cryptic regex statement (some people

would argue that “cryptic” describes pretty much every regex statement). In this situation, a comment

that gives a sample input goes a long way toward showing the intent of the regex statement.

Comments can also be used to provide warnings or consequences. I have first-hand experience with

this. I took over some code and saw a piece that looked odd to me. The code created deep copies of a

collection and assigned them to multiple properties. (A deep copy is one where all of the elements are

copied from one collection to another.) This looked wasteful to me, so I changed it to use a reference

assignment. This way, all of the properties pointed to the same physical object with no need to go

through the overhead of making copies.

This broke the code pretty quickly, and I reverted my changes (hurray for source control!). But before I

left that section of code, I left a comment that told why the deep copy of the collection was necessary.

This will hopefully act as a warning flag to any future developers who get the desire to “optimize” the

code.

Comments can also be used for TODOs. Many development environments support TODO comments that

are automatically parsed into a task list. We should take advantage of this. However, these comments

should be temporary. As soon as the task is completed, the TODO should be removed. Visual Studio has

a habit of replacing TODO with DONE when you mark a task as completed. Remove the DONE comment.

Once the task is complete, it is just noise. If we really need the history, it’s available in source control.

Bad Comments

We’ve already mentioned that comments should not describe what the code is doing, but there are a

few other ways that comments are misused.

One misuse is “journaling comments”. These are comments like: jjc – 4/18 – Added tax

calculation. They don’t add anything to the understandability of the code. If we really need to know

what was changed by whom on which date, we just need to check our source control – that’s what

source control is for. We need to make sure we’re using the tools that we have at hand.

A big misuse of comments is to comment out code. Do not comment out code. Ever. Period. (Okay, so

it’s okay to comment out code while you’re making modifications on your machine, but never check it in

to source control that way.)

The problem with commented out code is that no one will ever touch it again. When I run across a piece

of commented code, my first thought is “Is this really supposed to be commented out?” Maybe the

developer was doing some testing and just forgot about this code. Maybe it’s important to the

application. But I won’t change it, because I don’t know. So, I just leave the commented out code as-is.

My next thought is “Maybe this code is really important to someone”. Again, in that case, I’m not going

to touch it. I’ll just leave it alone.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 10

Don’t be afraid to delete code. It’s okay. If we ever need it back, we can retrieve it from source control

– that’s what it’s for. Use the tools in the way they are intended. Commented out code just creates

noise and uncertainty in the codebase.

Functions and Methods
Before talking about how we should write functions and methods, let’s talk about what not to do.

Here’s an experience that I had.

I was tasked with writing “Version 2” of a data transfer service. I had a set of requirements documents,

but one of the specifications was a little vague. I didn’t have anyone to ask about this function because

it was already after hours in their time zone. So, I decided to take a look at the current system to see

what I could figure out.

So, I popped open the file and found a bunch of regions in the code. “That’s great,” I thought, “Things

are organized into different sections.” Then I opened the region that I thought contained the code I

needed. Sure enough, there was a method called DoDataSync. That sounded promising. But when I

opened the method, it was rather long. I turned on line numbering, and here’s what I saw:

Yes, that single method goes from line 142 to line 1535. It was 1393 lines long! After looking through it

(just a bit), finding nested if/else statements, comment blocks that were difficult to understand, and a

few “gems” like this:

 // *** This is copy of the section from above

 // *** with some slight changes

I decided that I wasn’t going to find the answer I was looking for in the existing code. (BTW, I never did

find out what those “slight changes” were.)

Good Functions and Methods

There are a couple of qualities of good functions/methods. The first is that they should be short. A

method should fit on a single screen (at reasonable font-size/resolution). Ideally, it should be no longer

than 10 lines (although, we don’t often hit this ideal).

The reason for short functions is simple: we have limited brains. We can’t keep an entire codebase in

our heads. This means that we need to context-switch to figure out where we are in the code and what

we’re doing. Keeping an entire method “in view” helps our cognitive process.

Good functions do one thing. Let’s repeat that:

Do One Thing

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 11

Now, someone might argue that the 1,300 line method mentioned above does one thing: it transfers

data. But it was actually pulling data in multiple formats from multiple sources, transforming it in

specific ways (depending on the data format), and then pushing it to a destination system. In the

“Version 2” system that I worked on, I actually ended up with about a dozen separate classes to handle

the work (in small pieces – more on this later).

Now, software is complex. Often methods need to be complex. But there are a few techniques that can

be used to break down the complexity and make our code much more readable. One of these is to have

multiple levels of methods in a hierarchy.

Method Hierarchy

Complex methods should be broken down into different levels of functionality. The High-Level methods

give an overview of what’s going on; they make calls to the Mid-Level methods. The Mid-Level methods

give you a bit more detail, but not too much; they make calls to the Detail methods. Detail methods are

the “weeds” of the functionality. The number of levels we have depends on the amount of complexity.

We’ll look at a full example of this when we get to the refactoring sample below. Here’s a small taste.

Original Method

 public void Initialize()

 {

 if (!_container.IsRegistered<IPersonService>())

 throw new MissingFieldException(

 "IPersonService is not available from the DI Container");

 _service = _container.Resolve<IPersonService>();

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 _model = _container.Resolve<CatalogOrder>("CurrentOrder");

 RefreshCatalog();

 }

Updated High-Level Method

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 _model = GetModelFromContainer();

 RefreshCatalog();

 }

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 12

Updated Detail Methods

 private CatalogOrder GetModelFromContainer()

 {

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 return _container.Resolve<CatalogOrder>("CurrentOrder");

 }

 private IPersonService GetServiceFromContainer()

 {

 if (!_container.IsRegistered<IPersonService>())

 throw new MissingFieldException(

 "IPersonService is not available from the DI Container");

 return _container.Resolve<IPersonService>();

 }

Both the Original and Updated methods have exactly the same code. But when I look at the original, I

have to spend time trying to figure out exactly what it’s doing. It’s hard for my brain to pick out the

important parts.

But when I look at the updated High-Level method, I can see that this is doing 3 things: it’s assigning the

_service field, assigning the _model field, and then refreshing the catalog. If I need to know exactly

where _service or _model come from, I can drill down into the detail methods. But more

importantly, if I don’t need that level of detail, I never have to look at it.

We’ll see some more examples of this when we do some actual refactoring.

Classes
Object Oriented Programming (OOP) has been around for many years. If we’re using OO languages (like

C#), we can take advantage of a huge number of best practice resources. One of these is the S.O.L.I.D.

principles. This is a set of 5 principles that apply to good OO design. I would highly recommend doing

some internet browsing if you haven’t heard of these before. (As a side note, I mention 4 of the 5

principles in “Dependency Injection: A Practical Introduction” available on my website:

http://www.jeremybytes.com/Demos.aspx#DI.)

Do One Thing

Classes should do one thing (and do it well). This is also referred to as the Single Responsibility Principle

(the “S” in S.O.L.I.D.). Your class should have only one reason to change. If there is more than one

reason to change, then it’s time to start looking at moving some of that functionality to other classes or

methods.

One way to accomplish this is to outsource functionality through the use of delegates. A delegate can

give your class an extensibility point that can be used to inject non-core functionality. This is an example

of the Open/Closed Principle (the “O” in S.O.L.I.D.). Your class should be open for extension but closed

http://www.jeremybytes.com/Demos.aspx#DI

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 13

for modification (meaning we can inject the functionality without needing to modify the class itself). For

more examples of this, be sure to check out “Get Func<>-y: Delegates in .NET” available on my website:

http://www.jeremybytes.com/Demos.aspx#GF.

Another way to accomplish this is through Dependency Injection (DI). This is a way to make resources

available to a class without making the class responsible for the resources themselves (and generally

through abstractions). This is an example of the Dependency Inversion Principle (the “D” in the

S.O.L.I.D. principles). For more information on Dependency Injection, refer to the session mentioned

above.

Work in Small Chunks
One thing that should be clear by now is that we want to work in small pieces – whether this is small

methods or small classes. If we’re thinking small, we generally end up with readable, maintainable, and

testable code.

One technique that encourages working in small pieces is Test-Driven Development (TDD). If you want

more information on TDD, I would highly recommend Test-Driven Development by Example by Kent Beck

(my review is available here: http://jeremybytes.blogspot.com/2013/03/book-review-test-driven-

development-by.html).

TDD is built around the Red – Green – Refactor cycle. In TDD, the first thing we do is write a failing test

for the functionality we want to implement (Red). The test fails because it is a test for code that doesn’t

exist yet. The next step is to write just enough code to make the test pass (Green). We’re not building

the mansion, we just placing one brick. The last step is Refactor. This is the process of cleaning up our

code: removing duplication, combining classes, adding abstractions, etc.

What this encourages is building very small pieces. Beck does a great job of showing just how small

those pieces can be. What I found by reading this book is that I was thinking too big. The emphasis is

small pieces, built incrementally.

Which leads to another piece of wisdom:

If you aren’t writing incremental code,

you are writing excremental code.

(I didn’t make this up, but I don’t have anyone to attribute it to, either.)

Refactoring and Unit Testing
Refactoring is the process of making code better without changing the functionality. But this leads to a

big question: How do we know we aren’t changing functionality?

http://www.jeremybytes.com/Demos.aspx#GF
http://jeremybytes.blogspot.com/2013/03/book-review-test-driven-development-by.html
http://jeremybytes.blogspot.com/2013/03/book-review-test-driven-development-by.html

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 14

The answer to this is unit testing. If we don’t have unit tests, we don’t really know what our code is

doing. We may have an idea of what it’s doing, but we don’t have any proof that it’s actually doing it.

With valid unit tests in place, we know what our code is actually doing.

If we want to refactor safely and confidently, we must have valid unit tests in place. If we have tests in

place, we know immediately whether our code changes have impacted the functionality. If all of the

tests pass, we’re good. If we have failing tests, we need to review our updates to see what we did

wrong.

This is what Michael Feathers’ book is all about: how to bring existing code under test so that we can

safely change it. Feathers covers a number of different scenarios and offers practical advice for how to

add valid tests. Changes to the code are made only after a set of valid tests are available.

Real-World Refactoring
So, now it’s time to refactor some existing code to make it cleaner. The code sample is based on a real-

world project. The sample takes the same basic format of the original solution but has been simplified

some (the original solution had 40 projects; the sample has 6).

You can download the source code for the application from the website:

http://www.jeremybytes.com/Demos.aspx#CC. The sample code we’ll be looking at is built using .NET 4

and Visual Studio 2012. The solution is called “RefactoringBasics.sln”. Two versions are included: a

“starter” solution (if you want to follow along) as well as the “completed” code.

The Project Layout

The solution is broken into 6 projects, but there really only 2 that we care about:

The scenario is that we have an application that is made up of multiple isolated modules (just one

module in our sample). The application uses the Model-View-ViewModel (MVVM) design pattern for

presentation. (For more information on MVVM, you can refer to this article:

http://jeremybytes.blogspot.com/2012/04/overview-of-mvvm-design-pattern.html.)

In the “Stuff We Care About” solution folder, we have the projects we’ll be working with. The

Module.Catalog project contains both a view (CatalogView.xaml) and a view model

http://www.jeremybytes.com/Demos.aspx#CC
http://jeremybytes.blogspot.com/2012/04/overview-of-mvvm-design-pattern.html

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 15

(CatalogViewModel.cs). We really only care about the view model for our refactoring. The

Module.Catalog.Test project contains the unit tests for CatalogViewModel.

In “The Rest of the Application” folder, we have several other projects including the service layer, our

models, and the shell application that loads up the Catalog module.

Application Functionality

Here is the application in action:

When the application starts up, the data (the Catalog) is automatically refreshed from the service.

These are the items that appear in the primary list box on the right. The “Last Update” shows the time

that the data was refreshed from the service. There is a 10 second cache built into the system. So, if

you click the “Refresh Catalog” button 2 times in a row, you will notice that the Last Update time does

not change. However, if you wait for more than 10 seconds and click the button, you will see a brief

pause (as the primary list box goes blank), then the list will update and the Last Update time will be

different.

At the bottom of the screen are a set of filters based on the decade. When you check/uncheck one of

the filters, items from that decade are added/removed from the list. Whenever the “Refresh Catalog”

button is clicked, the filters are automatically reset. They are reset whether the cache is used or the

data is refreshed from the service.

If you double-click and item in the list box on the right, it will appear under “Selected Items” on the left.

You can remove an individual item by double-clicking in the “Selected Items” list or remove all items

with the “Clear” button. The “Selected Items” list is not affected by refreshing the catalog.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 16

File Overview: CatalogView.cs

We will be making changes to the CatalogViewModel.cs file. If we look at the regions, we get a general

feel for this class:

The Fields region includes some of our internal fields, including _service which holds a reference to

the PersonService (where we get the data), _model that holds a reference to an object that holds

the Selected Items that we saw in the UI, and also _container that holds a reference to our

Dependency Injection container (which is a Unity container). The Fields region also holds the backing

fields for our properties.

The Properties region holds the public properties that are data-bound to our View. This includes the

Model for the Selected Items, Catalog for the primary list, LastUpdateTime, and the filters used for

the checkboxes.

The Constructors region holds a single constructor that gets a reference to the Unity DI container.

This container is provided by the ShellApplication on startup. If you want more information on

Unity and Dependency Injection, refer to “Dependency Injection: A Practical Introduction”:

http://www.jeremybytes.com/Demos.aspx#DI.

The Methods region is where we will be spending most of our time. This holds the public methods for

the class, including Initialize (which gets called at startup) and RefreshCatalog (which is hooked

http://www.jeremybytes.com/Demos.aspx#DI

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 17

up to the button in the View). AddToSelection, RemoveFromSelection, and ClearSelection are

used to manage the Selected Items list. And we have one private member, RefreshFilter which is

used to filter the primary list.

We’ll see more details on the Methods region as we start refactoring the code.

The last region is for the INotifyPropertyChanged interface members. This is boilerplate code that

is used for the interface. The interface itself is implemented so that the View (UI) controls will update

properly when the databound objects are changed.

File Overview: CatalogViewModelTest.cs

As mentioned earlier, valid unit tests are critical to being able to refactor safely and confidently. These

are found in the CatalogViewModelTest.cs file:

We won’t be looking at the specifics of unit testing in this sample. What we need to note here is that we

have good coverage of all of the functionality of our View Model. We have a total of 19 tests that cover

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 18

all of the public members in the class. The solution is also configured to run the unit tests on every

build, so if you have the Test Explorer window open in Visual Studio (from the menu, select Test ->

Windows -> Test Explorer), you’ll see the tests update after every build. In a multi-monitor setup, I like

to have the Test Explorer open on a separate monitor. That way I can see the details of the test runs

(since they are updated constantly with each build).

Lines of Code

One thing you might notice is that the Test file has 488 lines while the ViewModel file only has 243 lines.

This means that we have twice as many lines of test as we do actual code. This is one of the things that

puts off managers (“Why should I have my developers write 3 times as much code as they need to.”).

However, this is a short-sighted view. Just because we have 3 times as much code doesn’t mean that it

took us 3 times longer to write. In fact, it’s possible to write code much more quickly with unit tests in

place because we can confidently move forward knowing that our code is working.

And ask yourself this question: what developer is limited by typing speed? We spend a lot more time

during the day thinking than typing. If we were really limited by typing speed, then we should hire a

typist to do all our coding for us.

Not Bad Code

Before we get into the details of refactoring, I want to point out that this is not bad code. It’s perfectly

reasonable. We have a class that has about 250 lines of code – that’s a reasonable size (for ViewModels,

I’m comfortable to about 400 lines of code – there’s a lot of “lines” in properties).

When we look at the methods, none of them are particularly long. The longest method that we have is

about 30 lines – still within the “reasonable” threshold (and extremely reasonable compared to 1,300

lines).

So, the goal here isn’t to rip apart code because it’s bad. Our goal here is to simply make good code

even better. It’s the difference between removing graffiti (an eyesore) and planting flowers (something

prettier). But as we’ll see, the improvements are well worth the effort.

Our First Refactor

So, our goal is to make our View Model more readable and maintainable. (We don’t really need to

worry about “testable” at this point since it already is well tested.)

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 19

We’ll start with the Initialize method that we saw earlier:

 public void Initialize()

 {

 if (!_container.IsRegistered<IPersonService>())

 throw new MissingFieldException(

 "IPersonService is not available from the DI Container");

 _service = _container.Resolve<IPersonService>();

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 _model = _container.Resolve<CatalogOrder>("CurrentOrder");

 RefreshCatalog();

 }

As we looked at briefly earlier, we want to turn this into a hierarchical method – letting Initialize

hold the high-level functionality and move the details into their own methods.

Now, there are tons of tools that help with refactoring including ReSharper, Just Code, and Code Rush

(to name a few). We’ll be using the refactoring tools that are built into Visual Studio for this demo (since

everyone has access to those). But you will get more functionality with a third-party tool.

Let’s look at the first 4 lines of code. We start with an if statement. This checks to see if

IPersonService is registered with the dependency injection container. If it is not registered, then it

throws an exception. Otherwise, it will retrieve the item from the container (using the Resolve

method) and assign it to the _service field.

But this is more detail than we really need in the Initialize method. These 4 lines are getting the

service from the container and assigning it to the _service field. So, let’s extract a method that says

just that.

We’ll start by highlighting the first 4 lines in the body of the method. Then we can right-click, select

“Refactor”, then “Encapsulate Method” (note that the keyboard shortcut is Ctrl+R, Ctrl+M). Then we get

a chance to name our new method. Let’s choose GetServiceFromContainer. This is how things

should look:

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 20

Here’s the result when we click “OK”:

 public void Initialize()

 {

 GetServiceFromContainer();

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 _model = _container.Resolve<CatalogOrder>("CurrentOrder");

 RefreshCatalog();

 }

 private void GetServiceFromContainer()

 {

 if (!_container.IsRegistered<IPersonService>())

 throw new MissingFieldException(

 "IPersonService is not available from the DI Container");

 _service = _container.Resolve<IPersonService>();

 }

At this point, we can build successfully, and all of our unit tests will pass as expected.

I’m not completely happy with this, though. I would rather have the assignment of the _service field

in the high-level method (rather than the details). So, we’ll make a few changes to the methods.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 21

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 _model = _container.Resolve<CatalogOrder>("CurrentOrder");

 RefreshCatalog();

 }

 private IPersonService GetServiceFromContainer()

 {

 if (!_container.IsRegistered<IPersonService>())

 throw new MissingFieldException(

 "IPersonService is not available from the DI Container");

 return _container.Resolve<IPersonService>();

 }

Notice that rather than returning void, our detail method now returns IPersonService, and the last

statement is a return rather than an assignment. Then back in our high-level method, we assign the

result of the method to the _service field.

All of our tests still pass. (Whoo-hoo!)

Let’s to the same thing with the next 4 lines in the Initialize method. We’ll highlight the lines, then

press Ctrl+R, Ctrl+M to extract the method. We’ll choose GetCurrentOrderFromContainer as the

method name and click “OK”. Here’s our updated code:

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 GetCurrentOrderFromCatalog();

 RefreshCatalog();

 }

 private IPersonService GetServiceFromContainer() ...

 private void GetCurrentOrderFromCatalog()

 {

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 _model = _container.Resolve<CatalogOrder>("CurrentOrder");

 }

Build and run tests: All tests pass.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 22

Then we’ll convert the method to return a CatalogOrder rather than void:

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 GetCurrentOrderFromContainer();

 RefreshCatalog();

 }

 private IPersonService GetServiceFromContainer()...

 private CatalogOrder GetCurrentOrderFromContainer()

 {

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 return _container.Resolve<CatalogOrder>("CurrentOrder");

 }

Build and run tests. Uh, oh. 6 tests failed. It looks like we have a problem.

And this is exactly why it is vital to have good unit tests in place before we start to refactor.

This is generally where I’m glad I spent some time naming my unit tests. The format that I use for

naming tests is based on a recommendation from Roy Osherove (author of The Art of Unit Testing with

Examples in .NET). It is a 3-part naming convention with the parts separated by underscores.

The first part is the item under test. For the first failed test, it tells me that Model is what I was testing.

The second part is the action performed in the test. For the first failed test, OnInitialization tells

me that it was during the initialization process – and more specifically, I know that this is a call to the

Initialize method.

The last part is the expected outcome. For the first failed test, IsPopulated tells me that I expect the

Model property to be populated after the Initialize method is run.

So, we’re expecting the Model property to be populated but it isn’t. If we review the code, it looks like

we missed a step. We modified the detail method so that it returns the Current Order, but we never

assign that to the _model field.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 23

This is a quick fix:

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 _model = GetCurrentOrderFromContainer();

 RefreshCatalog();

 }

 private IPersonService GetServiceFromContainer()...

 private CatalogOrder GetCurrentOrderFromContainer()

 {

 if (!_container.IsRegistered<CatalogOrder>("CurrentOrder"))

 throw new MissingFieldException(

 "CurrentOrder is not available from the DI Container");

 return _container.Resolve<CatalogOrder>("CurrentOrder");

 }

Build and run tests: All tests pass. Now we’re back to normal.

Now, you might be wondering why we had 6 tests fail instead of just one. The failing test that we

looked at (Model_OnInitialized_IsPopulated) happens to be the test for the piece of code that

we broke. The other 5 tests failed with NullReferenceExceptions because the tests themselves

were trying to use the Model property (that wasn’t being set).

Another side note about testing: in our Initialize method, we are assigning to the private _model

field, but in the unit tests, we are testing the public Model property. In my unit tests, I like to test the

public members as much as possible. I’m testing the public members because I know that the private

implementation is subject to change, and I don’t want to constantly change my unit tests when the

private parts change.

What I’m really testing is if my class behaves the way that the outside world expects. The outside world

can only see the public members – these are the properties that the View uses for data binding as well

as the public methods that can be called through button clicks.

There are times when we might want to test private members. But as a general rule, I like to stick with

testing the public API.

So, we’ve seen how the hierarchical refactoring can make our methods easier to understand. Imagine

walking up to this for the first time:

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 _model = GetCurrentOrderFromContainer();

 RefreshCatalog();

 }

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 24

At a glance (and without someone needing to explain it to me), we have a good idea of what this

method is trying to do. It is assigning the _service field (from the DI container), assigning the _model

field (also from the DI container), and then it is refreshing the Catalog.

If we need details, we can always drill down into the other methods. But we have a very clear roadmap

of where we might need to go.

Refactoring the RefreshCatalog Method

We’ll use these same techniques to improve the readability of the RefreshCatalog method. Let’s see

if we can find some places to chunk this out:

 public void RefreshCatalog()

 {

 if (DateTime.Now - LastUpdateTime < new TimeSpan(0, 0, 10))

 {

 _include70s = _include80s = _include90s = _include00s = true;

 RefreshFilter();

 }

 else

 {

 Catalog = new List<Person>();

 var asyncBegin = _service.BeginGetPeople(null, null);

 var task = Task<List<Person>>.Factory.FromAsync(

 asyncBegin, _service.EndGetPeople);

 task.ContinueWith(t =>

 {

 _fullPeopleList = t.Result;

 _include70s = _include80s = _include90s = _include00s

 = true;

 RefreshFilter();

 LastUpdateTime = DateTime.Now;

 }, TaskContinuationOptions.NotOnFaulted);

 Action<Exception> rtxDel = (ex) => { throw ex; };

 var uiDispatcher = Dispatcher.CurrentDispatcher;

 task.ContinueWith(rp =>

 {

 uiDispatcher.Invoke(rtxDel, rp.Exception.InnerException);

 }, TaskContinuationOptions.OnlyOnFaulted);

 }

 }

Here’s the big functionality:

1. The “if” statement determines whether the cache is still valid (by comparing the current time to

the Last Updated time and seeing if the difference is more than 10 minutes).

a. If the cache is valid, then we reset the filters.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 25

2. If the cache is not valid:

a. We clear the “Catalog” property. This has the effect of blanking out the primary list on

the View.

b. We make an asynchronous call to the service. The asynchronous call makes sure that

the UI stays responsive while the data is being retrieved.

c. When the asynchronous call returns:

i. We set an internal field (_fullPeopleList) with the result of the service. (The

internal field is used in the filtering process.)

ii. We reset the filters.

iii. We set the LastUpdated property.

d. If the asynchronous call errors, re-throw the exception on the UI thread.

A quick note about the asynchronous service call. We aren’t using async/await here because the code

is .NET 4.0 (a limitation because there were still Windows XP machines that needed to run this code).

Step 1: Remove Duplicate Code

Let’s start with the duplicated code (remember the DRY principle). Notice that we have “reset the

filters” in 2 places. Here’s the code:

 _include70s = _include80s = _include90s = _include00s = true;

 RefreshFilter();

Since duplicate code is a big red flag, let’s refactor this out. Highlight the 2 lines inside the first if

statement and extract a method (again using the right-click menu or Ctrl+R, Ctrl+M). We’ll name the

method ResetFilterToDefaults. After the method is created, replace the duplicated code with the

new method.

Here’s what we get:

 public void RefreshCatalog()

 {

 if (DateTime.Now - LastUpdateTime < new TimeSpan(0, 0, 10))

 {

 ResetFilterToDefaults();

 }

 else

 {

 Catalog = new List<Person>();

 var asyncBegin = _service.BeginGetPeople(null, null);

 var task = Task<List<Person>>.Factory.FromAsync(

 asyncBegin, _service.EndGetPeople);

 task.ContinueWith(t =>

 {

 _fullPeopleList = t.Result;

 ResetFilterToDefaults();

 LastUpdateTime = DateTime.Now;

 }, TaskContinuationOptions.NotOnFaulted);

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 26

 Action<Exception> rtxDel = (ex) => { throw ex; };

 var uiDispatcher = Dispatcher.CurrentDispatcher;

 task.ContinueWith(rp =>

 {

 uiDispatcher.Invoke(rtxDel, rp.Exception.InnerException);

 }, TaskContinuationOptions.OnlyOnFaulted);

 }

 }

 private void ResetFilterToDefaults()

 {

 _include70s = _include80s = _include90s = _include00s = true;

 RefreshFilter();

 }

Build and run tests: All tests pass. You can experiment by commenting out the call to

ResetFilterToDefaults in one place or the other and see that the tests do catch the problem.

Step 2: Clarify the Conditional

For the next part, I want to make the if statement more readable.

 if (DateTime.Now - LastUpdateTime < new TimeSpan(0, 0, 10))

If I’m new to this code, I can figure out what this is doing (checking to see if the LastUpdateTime is

more than 10 seconds in the past), but it doesn’t really tell me why we’re checking this. If we extract

this as a method or property, we can make the intent clear.

Let’s create a calculated property with this code:

 public bool IsCacheValid

 {

 get

 {

 return DateTime.Now - LastUpdateTime < new TimeSpan(0, 0, 10);

 }

 }

 public void RefreshCatalog()

 {

 if (IsCacheValid)

 {

 ResetFilterToDefaults();

 }

 else ...

 }

Unfortunately, Visual Studio doesn’t have any built-in refactoring that makes this easy. I usually end up

doing some copy/paste work along with some code snippets to create the property. A third-party tool

will probably have some better options.

As an organizational note: I moved the IsCacheValid property up to the Properties region of the

class.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 27

Build and run tests: All tests pass. And now our if statement shows the intent: we want to know if the

cache is still valid.

Step 3: Extract the Bulk

Now let’s move on to the else statement, and let’s think of this RefreshCatalog method from a high

level. If the cache is valid, then we reset the filters. If the cache is not valid, we repopulate the catalog

from the service. So, let’s go ahead and make our code say that.

Highlight everything inside the else statement, extract the method, and name it

PopulateCatalogFromService.

 public void RefreshCatalog()

 {

 if (IsCacheValid)

 {

 ResetFilterToDefaults();

 }

 else

 {

 PopulateCatalogFromService();

 }

 }

 private void PopulateCatalogFromService()

 {

 Catalog = new List<Person>();

 var asyncBegin = _service.BeginGetPeople(null, null);

 var task = Task<List<Person>>.Factory.FromAsync(

 asyncBegin, _service.EndGetPeople);

 task.ContinueWith(t =>

 {

 _fullPeopleList = t.Result;

 ResetFilterToDefaults();

 LastUpdateTime = DateTime.Now;

 }, TaskContinuationOptions.NotOnFaulted);

 Action<Exception> rtxDel = (ex) => { throw ex; };

 var uiDispatcher = Dispatcher.CurrentDispatcher;

 task.ContinueWith(rp =>

 {

 uiDispatcher.Invoke(rtxDel, rp.Exception.InnerException);

 }, TaskContinuationOptions.OnlyOnFaulted);

 }

Build and run tests: All tests pass.

Now if we remove some of the curly braces from the if/else, we end up with a very compact, readable

method:

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 28

 public void RefreshCatalog()

 {

 if (IsCacheValid)

 ResetFilterToDefaults();

 else

 PopulateCatalogFromService();

 }

And as always, we can drill down if we need to. If we need to see how long the cache is, we can check

the IsCacheValid property. If we need details on populating the catalog from the service, we just drill

into that method.

Note: I won’t get into the debate of whether the curly braces should be left in. There are different

schools of thought. Some people always leave them in just in case another statement is added.

Personally, if both the “if” and “else” have only a single, short statement, I’ll pull them out.

Step 4: Extracting Error Handling

When we look at the PopulateCatalogFromService method that we just created, we see that the

last part is for error handling.

 Action<Exception> rtxDel = (ex) => { throw ex; };

 var uiDispatcher = Dispatcher.CurrentDispatcher;

 task.ContinueWith(rp =>

 {

 uiDispatcher.Invoke(rtxDel, rp.Exception.InnerException);

 }, TaskContinuationOptions.OnlyOnFaulted);

Since that is “exceptional” behavior, let’s move it out of this method into a lower-level method. We’ll

extract it into RethrowServiceExceptionOnUIThread. Sometimes method names may need to be

long in order to tell what they really do. We don’t want our method names to be overwhelming, but

there are times that we can use some extra information.

One thing to note about the Extract Method refactoring in Visual Studio: When we extract these 6 lines

of code, Visual Studio sees that we need a parameter for our new method (which is a Task). The

refactoring tool automatically adds this for us. Here are the results:

 private void PopulateCatalogFromService()

 {

 Catalog = new List<Person>();

 var asyncBegin = _service.BeginGetPeople(null, null);

 var task = Task<List<Person>>.Factory.FromAsync(

 asyncBegin, _service.EndGetPeople);

 task.ContinueWith(t =>

 {

 _fullPeopleList = t.Result;

 ResetFilterToDefaults();

 LastUpdateTime = DateTime.Now;

 }, TaskContinuationOptions.NotOnFaulted);

 RethrowServiceExceptionOnUIThread(task);

 }

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 29

 private static void RethrowServiceExceptionOnUIThread(

 Task<List<Person>> task)

 {

 Action<Exception> rtxDel = (ex) => { throw ex; };

 var uiDispatcher = Dispatcher.CurrentDispatcher;

 task.ContinueWith(rp =>

 {

 uiDispatcher.Invoke(rtxDel, rp.Exception.InnerException);

 }, TaskContinuationOptions.OnlyOnFaulted);

 }

Build and run tests: Everything’s still good.

Step 5: Some Useful Comments

We could extract some more code out of the PopulateCatalogFromService method, but I’m

satisfied with the level of detail that we have here. But there is one line of code that could use some

explanation:

 Catalog = new List<Person>();

Why are we doing this? I gave a bit of a hint in the functionality outline. During the process, we make

an asynchronous call to the service. The service itself has an artificial 1 second delay built in (to simulate

a normal web service call). Since we’ve clicked the “Refresh Catalog” button on the UI, we want to see

some UI changes to know that it’s working. So, we clear the primary list box and keep it empty until the

data comes back from the service.

We do this through databinding by clearing the Catalog property in the ViewModel. When Catalog is

cleared (by assigning a blank list), the list box in the UI is notified and updates its binding – this clears the

list box. Later on, when the Catalog property is repopulated, the list box will show data (we’ll look at

where Catalog gets populated in just a bit).

So, let’s add a comment to clarify the intent of the code:

 private void PopulateCatalogFromService()

 {

 // Clearing the Catalog will clear the screen

 // while we wait for the async service call.

 Catalog = new List<Person>();

 var asyncBegin = _service.BeginGetPeople(null, null);

 var task = Task<List<Person>>.Factory.FromAsync(

 asyncBegin, _service.EndGetPeople);

 task.ContinueWith(t =>

 {

 _fullPeopleList = t.Result;

 ResetFilterToDefaults();

 LastUpdateTime = DateTime.Now;

 }, TaskContinuationOptions.NotOnFaulted);

 RethrowServiceExceptionOnUIThread(task);

 }

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 30

Step 6: How Does Catalog Get Set?

Let’s look at what happens when our asynchronous service call returns:

 _fullPeopleList = t.Result;

 ResetFilterToDefaults();

 LastUpdateTime = DateTime.Now;

Something’s not quite clear. Ultimately, we need to set the Catalog property in order for it to be

updated. But we’re not doing that here. Let’s take a look at what happens in

ResetFilterToDefaults:

 private void ResetFilterToDefaults()

 {

 _include70s = _include80s = _include90s = _include00s = true;

 RefreshFilter();

 }

Nope, nothing here. Let’s drill down to RefreshFilter:

 private void RefreshFilter()

 {

 RaisePropertyChanged("Include70s");

 RaisePropertyChanged("Include80s");

 RaisePropertyChanged("Include90s");

 RaisePropertyChanged("Include00s");

 IEnumerable<Person> people = _fullPeopleList;

 if (!Include70s)

 people = people.Where(p => p.StartDate.Year / 10 != 197);

 if (!Include80s)

 people = people.Where(p => p.StartDate.Year / 10 != 198);

 if (!Include90s)

 people = people.Where(p => p.StartDate.Year / 10 != 199);

 if (!Include00s)

 people = people.Where(p => p.StartDate.Year / 10 != 200);

 Catalog = people.ToList();

 }

There it is. We’re setting the Catalog property when we refresh the filter. That gives me a hint that

this method might not have the best name, so let’s give it a new one.

Right-click on RefreshFilter, select “Refactor”, then “Rename” (or press Ctrl+R, Ctrl+R). Let’s give it

a new name of UpdateCatalogFilter.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 31

Notice the options that we have: we can update strings and comments in addition to any references.

Let’s leave “Preview reference changes” checked and click “OK”.

This shows us all the places where RefreshFilter will be updated. We can click each item and see a

preview of the updated code. We can also uncheck items selectively if we find something we don’t

actually want to rename (although I’ve never actually done that).

Clicking “OK” will complete the renaming.

Build and run tests: Still good.

Note: We could continue the renaming up a level to make ResetFilterToDefaults more descriptive,

but we won’t undertake that now.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 32

One Last Change

Now that I’ve had a chance to look at this UpdateCatalogFilter method, I think we can improve the

readability:

 private void UpdateCatalogFilter()

 {

 RaisePropertyChanged("Include70s");

 RaisePropertyChanged("Include80s");

 RaisePropertyChanged("Include90s");

 RaisePropertyChanged("Include00s");

 IEnumerable<Person> people = _fullPeopleList;

 if (!Include70s)

 people = people.Where(p => p.StartDate.Year / 10 != 197);

 if (!Include80s)

 people = people.Where(p => p.StartDate.Year / 10 != 198);

 if (!Include90s)

 people = people.Where(p => p.StartDate.Year / 10 != 199);

 if (!Include00s)

 people = people.Where(p => p.StartDate.Year / 10 != 200);

 Catalog = people.ToList();

 }

This uses LINQ to perform the actual filtering of the lists. The if statements are all negatives because

the filters are additive. There are a couple different approaches to this, but this seems to be the

cleanest. The part that I want to fix is what we have in the lambda expressions of the Where statement:

 p => p.StartDate.Year / 10 != 197

The intent of this is to figure out whether the StartDate property is in a particular decade (the 1970s

for this particular one). We take the Year (such as 1975) and use integer division to divide it by 10. This

truncates the last digit (ex., 197). Then we use that for comparison. But comparing a date to 197

doesn’t really make sense. What if we multiply everything by 10?

 if (!Include70s)

 people = people.Where(p => p.StartDate.Year / 10 * 10 != 1970);

 if (!Include80s)

 people = people.Where(p => p.StartDate.Year / 10 * 10 != 1980);

 if (!Include90s)

 people = people.Where(p => p.StartDate.Year / 10 * 10 != 1990);

 if (!Include00s)

 people = people.Where(p => p.StartDate.Year / 10 * 10 != 2000);

Honestly, I’m not sure if that’s better or worse. I like that I’m comparing to an actual decade (1970), but

taking the year and dividing by 10 and then multiplying by 10 – that’s ugly. And I can see someone

wanting to optimize it.

So, let’s hide the ugliness behind a calculated property. This will take us to the Person class (in the

Person.cs file). The easiest way to navigate there is to right-click on StartDate and select

“GoToDefinition” (or press F12).

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 33

Let’s create a new calculated property called StartDecade:

 public class Person

 {

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime StartDate { get; set; }

 public int Rating { get; set; }

 public int StartDecade

 {

 get { return StartDate.Year / 10 * 10; }

 }

 public override string ToString()

 {

 return string.Format("{0} {1}", FirstName, LastName);

 }

 }

When we update our UpdateCatalogFilter method, the intent is much clearer:

 private void UpdateCatalogFilter()

 {

 RaisePropertyChanged("Include70s");

 RaisePropertyChanged("Include80s");

 RaisePropertyChanged("Include90s");

 RaisePropertyChanged("Include00s");

 IEnumerable<Person> people = _fullPeopleList;

 if (!Include70s)

 people = people.Where(p => p.StartDecade != 1970);

 if (!Include80s)

 people = people.Where(p => p.StartDecade != 1980);

 if (!Include90s)

 people = people.Where(p => p.StartDecade != 1990);

 if (!Include00s)

 people = people.Where(p => p.StartDecade != 2000);

 Catalog = people.ToList();

 }

File Organization, Part 2

As noted when we first cracked open these files, I have regions set up for the various pieces of the class.

I’ll emphasize that this organization is a personal preference based on a coding standard that I worked

with for quite a while.

Because of this, I like to separate my public methods from my private methods. So, I’ll create a separate

regions for them.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 34

Here is the organization of those regions (with some white space removed):

I like to keep my public API as visible as possible. This is why I like to have the Properties,

Constructors, and Public Methods regions. Also, when we look at the class view in the Visual

Studio 2012 enhanced Solution Explorer, the members appear in the order they appear in the code (not

alphabetically):

I like that the public methods (the cube icons) are all grouped together and the private methods (the

cubes with padlocks) are all grouped together.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 35

Again, just a personal preference (but there is some logic behind it).

Be sure to build and run the tests again. We want to ensure that we didn’t break anything.

Refactoring Review

So, we just spent 20 pages refactoring code. Was it worth it? You be the judge. Here are the high-level

methods we ended up with:

 public void Initialize()

 {

 _service = GetServiceFromContainer();

 _model = GetCurrentOrderFromContainer();

 RefreshCatalog();

 }

 public void RefreshCatalog()

 {

 if (IsCacheValid)

 ResetFilterToDefaults();

 else

 PopulateCatalogFromService();

 }

I don’t think we have anything to fear from the homicidal maniac.

Our CatalogViewModel.cs file is now 275 lines long (compared to the 243 lines we started with).

And remember, we didn’t really add new code – we primarily just wrapped existing code in methods

that describe the functionality.

And all of our unit tests still run, so we know that we haven’t altered the functionality. If we run the

application, we see that it works exactly as it did before. But we already knew that since we have good

unit test coverage.

There may be some folks who say we didn’t go far enough. Perhaps we should split out some of the

functionality into separate classes (such as the service calls). Perhaps we need a few helper classes.

Perhaps we need to parameterize the time for our cache. Code is never “perfect”. And that’s okay.

We do have to be careful, though. We could spend all day refactoring. Often it is necessary, but

eventually, it gets to the point where it’s not adding much benefit for the amount of effort involved.

Like everything else in development, we need to keep things in balance.

Be a Clean Code Advocate
The Boy Scout rule is “Always leave the campground cleaner than you found it.” If we come across a

mess, we should take responsibility to clean it up, even though we didn’t make that mess in the first

place.

Clean Code: Homicidal Maniacs Read Code, Too presented by JeremyBytes.com
©Jeremy Clark 2013 Page 36

We can bring this rule into our world of clean code:

Always leave the code cleaner than you found it.

Whenever we need to go into a piece of code to make a change (whether it’s a bug fix or a feature

update), we should clean up the section of code that we’re working on. This may mean renaming

ambiguous properties or methods. It may mean adding unit tests that weren’t there before. It may

mean breaking complex methods into a high- / mid- / detail-level hierarchy.

Think about how you wish you had found things when you opened the code. Now, try to leave it that

way for the next developer. (And sometimes that next developer is you – six months down the road.)

And if you need more encouragement, just think about that homicidal maniac: he’s got your home

address…

Happy coding!

