
Introduction to the
BackgroundWorker Component in WPF

An overview of the BackgroundWorker component by JeremyBytes.com

The Problem
We’ve all experienced it: the application UI that hangs. You get the dreaded “Not Responding” message,
and you have to decide if you should wait it out or simply kill the process. If you have long-running
processes in your application, you should consider putting them on a separate thread so that your UI
remains responsive. However, threading is a daunting subject. We’ve heard horror stories about race
conditions and deadlocks, and needing to use the thread dispatcher to communicate between background
threads and the UI thread. At this point, it sounds like a subject best left to the experts.

The Solution
Fortunately, the .NET framework provides a simple way to get started in threading with the
BackgroundWorker component. This wraps much of the complexity and makes spawning a background
thread relatively safe. In addition, it allows you to communicate between your background thread and
your UI thread without doing any special coding. You can use this component with WinForms and WPF
applications. We’ll be using it with WPF here.

The BackgroundWorker offers several features which include spawning a background thread, the ability
to cancel the background process before it has completed, and the chance to report the progress back to
your UI. We’ll be looking at all of these features.

The Set Up
We’ll start with a fairly simple WPF application that has a long-running process that blocks the
application until it has completed. You can download the source code for the application here: http://
www.jeremybytes.com/Downloads.aspx. The download includes the starter application and the
completed code. The starter application includes the following.

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 1

http://www.jeremybytes.com/Downloads.aspx
http://www.jeremybytes.com/Downloads.aspx
http://www.jeremybytes.com/Downloads.aspx
http://www.jeremybytes.com/Downloads.aspx

1. A Simple WPF form:

You can find the XAML for this in the download. It consists of 2 Text Boxes (Iterations and
Output), a Progress Bar, and 2 Buttons (Start and Cancel).

2. A long running process (in the code-behind the form):

 private int DoSlowProcess(int iterations)
 {
 int result = 0;

 for (int i = 0; i <= iterations; i++)
 {
 Thread.Sleep(100);
 result = i;
 }

 return result;
 }

You can see that we’re using the famously slow process Sleep(100) that loops based on the
parameter value.

3. Event-handlers for the buttons (in the code-behind):

 private void startButton_Click(object sender, RoutedEventArgs e)
 {
 int iterations = 0;
 if (int.TryParse(inputBox.Text, out iterations))
 {
 outputBox.Text = DoSlowProcess(iterations).ToString();
 startButton.IsEnabled = true;
 cancelButton.IsEnabled = false;
 }
 }

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 2

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 // TODO: Implement Cancel process
 }
 #endregion

When you run the application and click the Start button, you’ll see that the application hangs until the
process is finished. If you try to move or resize the window while the process is running, nothing will
happen for several seconds. And you’ll see the “Not Responding” message if you look in Task Manager:

When the process is completed, you will see the value from the Iterations box mirrored to Output box.
This is simply a confirmation that the process completed. You can try this with different values. Since
we are using a Sleep(100), a value of 50 iterations will translate into a 5 second process; a value of 100 is
10 seconds, and so on. Just as a side note, I chose a value of 1/10th of a second for the Sleep rather than
the usual 1 second so that we will have a smoother progress update later on.

Adding the BackgroundWorker
The BackgroundWorker is a non-visual component. In the WinForms world, this would mean that we
could just drag the BackgroundWorker from the Tool Box onto the Form, and it would show up as a non-
visual component. In WPF, things are a little bit different. We need to add the BackgroundWorker as a
window resource that we can reference throughout our code. Here’s the steps:

1. Add the System.ComponentModel namespace to the XAML. We do this in the markup for the
Window. The good news is that Visual Studio IntelliSense helps you out quite a bit with this.
We’ll give the namespace a “cm” alias so we can reference it easily. Here’s the Window markup
with the namespace included:

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 3

<Window x:Class="BackgroundWorkerInWPF.WorkerWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:cm="clr-namespace:System.ComponentModel;assembly=System"
 Title="Background Worker in WPF" Height="250" Width="300">
...
</Window>

2. Add a BackgroundWorker as a Window Resource.

 <Window.Resources>
 <cm:BackgroundWorker x:Key="backgroundWorker" />
 </Window.Resources>

Hooking Things Up
To use the basic functionality of the BackgroundWorker, we need to do a couple of things. First, we need
to hook up two event handlers: DoWork and RunWorkerCompleted. These events are much like they
sound. To kick off the background process we call the RunWorkerAsyc method of the
BackgroundWorker and pass any parameters we need. This fires the DoWork event (which is where we’ll
put our long-running process). The RunWorkerCompleted event fires after that process is done. At that
point, we can update our UI and do clean up (if required).

So, let’s put our process into the background. We’ll start by creating the handlers for the events
mentioned above. As a reminder, Visual Studio IntelliSense helps us out quite a bit with this. In our
BackgroundWorker markup that we created above, just type “DoWork=” and you’ll get the option for
“<New Event Handler>”. This will create the stub and give the handler a name based on our component.
We’ll do the same for “RunWorkerCompleted” and end up with the following XAML:

<Window.Resources>
 <cm:BackgroundWorker x:Key="backgroundWorker"
 DoWork="BackgroundWorker_DoWork"
 RunWorkerCompleted="BackgroundWorker_RunWorkerCompleted"/>
</Window.Resources>

Now we’ll flip over to the code-behind and implement these handlers. Let’s look at the code, then we’ll
talk through it. Note, in addition to the code below, I have also added a “using
System.ComponentModel;” to make things a little less verbose:

 private void BackgroundWorker_DoWork(object sender, DoWorkEventArgs e)
 {
 e.Result = DoSlowProcess((int)e.Argument);
 }

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 4

 private void BackgroundWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 else
 {
 outputBox.Text = e.Result.ToString();
 }
 startButton.IsEnabled = true;
 cancelButton.IsEnabled = false;
 }

First, you’ll see that our DoWork event calls the DoSlowProcess method (our long-running process).
You’ll note that we are getting an integer argument from the DoWorkEventArgs (we’ll see how this gets
passed in just a minute). The e.Argument is of type Object, so we have to cast it to the integer type that
our method is expecting. Next, you’ll note that we’re passing the result back to the DoWorkEventArgs in
e.Result. This will be used in the next handler.

The RunWorkerCompleted event fires after the long process is complete. You can see that the first thing
we do is check to see if an error occurred. If not, then we’ll go ahead and populate the output box with
the result of our method. The e.Result here is actually the same e.Result from the DoWork event. In our
case, the DoSlowProcess returns an integer that we populate in the output. In addition, you can see that
we are enabling and disabling the buttons as appropriate.

The important thing here is what you don’t see. Notice that our completed handler is manipulating our
UI elements without any use of the Dispatcher or Invoke methods that you need to do if you are handling
the threading on your own. Instead, we just reference the elements on the UI thread directly. The
BackgroundWorker takes care of all of the complexity on the back end.

Finally, we need to kick off the DoWork event in our Start Button handler. In order to do this, we need a
reference to the BackgroundWorker component in our window. The problem is that it is simply a
resource right now. The first task is to get a reference to it. We’ll put this code at the top of our Window
class and modify the constructor:

 private BackgroundWorker backgroundWorker;

 public WorkerWindow()
 {
 InitializeComponent();
 backgroundWorker =
 ((BackgroundWorker)this.FindResource("backgroundWorker"));
 }

In this code, you see that we create a private variable to reference the BackgroundWorker component.
Then in the constructor, we pull the component out of the resources by using the FindResource method.
Now we can use the component in our code.

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 5

Here’s our updated code in the Start Button Click event handler:

 private void startButton_Click(object sender, RoutedEventArgs e)
 {
 int iterations = 0;
 if (int.TryParse(inputBox.Text, out iterations))
 {
 backgroundWorker.RunWorkerAsync(iterations);
 startButton.IsEnabled = false;
 cancelButton.IsEnabled = true;
 outputBox.Text = "";
 }
 }

You’ll notice that instead of calling the DoSlowProcess directly, we are now calling the RunWorkerAsync
method of the BackgroundWorker. This method takes an optional object parameter. In our case, we will
use this to pass the number of iterations through. This is the value that shows up in the e.Argument of the
DoWork handler that we saw above.

The next thing we do is update the button states appropriately. Since the Cancel button is not yet
implemented, it won’t have too much effect. But we’ll get to that in a bit.

Finally, note that we are clearing the output text. Remember that since we are running the process in the
background, our UI still remains responsive. We want to clear out the output while the process is running,
and then populate it again after the process is complete. This is handled by the RunWorkerCompleted
event that we saw above.

Now we have a fully-functional application with a background process. If you run the application now,
you’ll notice different behavior from what we saw before. After you click the Start button, the UI remains
responsive: you can move and resize the window, type in the boxes, or whatever. When the process is
finished, the output box is updated.

But we’re not done yet. We still need to look at the Cancel and Progress functions.

Updating Progress
Next we’ll look at reporting progress back from our long-running process. One thing to keep in mind if
you want to have a progress bar in your UI: you will need to come up with some type of metric for the
percent complete. For example, I have used the BackgroundWorker for long-running SQL queries. In
this case, I was unable to report percentage because I had no idea exactly how long the process would
take. In our sample here, we can use some fairly simple math to report the percentage completed.

The BackgroundWorker has a property we need to set (WorkerReportsProgress) and an event handler
(ProgressChanged). These are fairly straight forward to implement. But here’s where things get a little
complicated. We need to update the progress in our DoSlowProcess method. This means that we need a
reference to the BackgroundWorker.

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 6

Let’s start with the easy parts. First the updated XAML:

<Window.Resources>
 <cm:BackgroundWorker x:Key="backgroundWorker"
 DoWork="BackgroundWorker_DoWork"
 RunWorkerCompleted="BackgroundWorker_RunWorkerCompleted"
 WorkerReportsProgress="True"
 ProgressChanged="BackgroundWorker_ProgressChanged"/>
 </Window.Resources>

Here we just set the WorkerReportsProgress to True (the default is False) and add the stub for the
ProgressChanged event handler. As we did above, we’ll just let Visual Studio create a <New Event
Handler> for us.

To implement the event handler, we’ll just set the value of the progress bar in our UI:

 private void BackgroundWorker_ProgressChanged(object sender,
 ProgressChangedEventArgs e)
 {
 workerProgress.Value = e.ProgressPercentage;
 }

Now we’ll make updates to some of our existing code. First, the DoSlowProcess method:

 private int DoSlowProcess(int iterations,
 BackgroundWorker worker, DoWorkEventArgs e)
 {
 int result = 0;

 for (int i = 0; i <= iterations; i++)
 {
 if (worker != null)
 {
 if (worker.WorkerReportsProgress)
 {
 int percentComplete =
 (int)((float)i / (float)iterations * 100);
 worker.ReportProgress(percentComplete);
 }
 }

 Thread.Sleep(100);
 result = i;
 }

 return result;
 }

We’ve added both BackgroundWorker and DoWorkEventArgs parameters to the DoSlowProcess method.
In order to update the progress, we’ll add some code to each iteration of the loop. First, we check to make
sure that the BackgroundWorker parameter was populated; then we check the WorkerReportsProgress

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 7

property to see if the BackgroundWorker reports progress. If false, then we’ll skip the code. If true, then
we calculate the percentage and call the BackgroundWorker.ReportProgress method. This will fire the
ProgressChanged event that we implemented above.

Now, since we’ve added additional parameters to DoSlowProcess, we’ll need to update the method call.
As a reminder, this was in the DoWork event. Here’s the updated code:

 private void BackgroundWorker_DoWork(object sender, DoWorkEventArgs e)
 {
 var bgw = sender as BackgroundWorker;
 e.Result = DoSlowProcess((int)e.Argument, bgw, e);
 }

We’ll just cast the sender to a BackgroundWorker and pass it on through. We’ll just pass the
DoWorkEventArgs parameter through as well.

Finally, we’ll add a line of code to the RunWorkerCompleted event to zero out the progress bar after it has
completed:

 private void BackgroundWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 else
 {
 outputBox.Text = e.Result.ToString();
 workerProgress.Value = 0;
 }
 startButton.IsEnabled = true;
 cancelButton.IsEnabled = false;
 }

The reason for this is if you are using Windows Vista or Windows 7, the progress bar continues to animate
even after it is at 100%. This makes it difficult to tell that the process is complete. So, we’ll just set it
back to 0 after it’s done.

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 8

Now, if we run the application again, we’ll see that we have a functional progress bar. The last step is the
add cancellation.

Canceling the Background Process
Before implementing cancellation in your application, you will need to take a few things into
consideration. First, when you cancel a BackgroundWorker process, there is no event that fires, and the
process does not stop immediately. Instead, a cancellation flag gets set on the BackgroundWorker. It is
up to your long-running process to check for this flag and to stop running if necessary. In my example
above with the long-running SQL query, I could not implement cancellation because there was no
“iteration” in my process – it was simply waiting for the query to return.

In our example here, since we are using a loop, we have a perfect place to check for cancellation and stop
our process. Here’s an overview of the steps we’ll take, then we’ll look at each in more detail.

First, we need to set a property on the BackgroundWorker (“WorkerReportsCancellation”). Then we’ll
tell the component we want to cancel in the Cancel Button event handler. Next we’ll add the cancellation
code to our DoSlowProcess method. And finally, we’ll make a few changes to the RunWorkerCompleted
event handler to behave differently if the process was canceled.

First, the XAML:

<Window.Resources>
 <cm:BackgroundWorker x:Key="backgroundWorker"
 DoWork="BackgroundWorker_DoWork"
 RunWorkerCompleted="BackgroundWorker_RunWorkerCompleted"
 WorkerReportsProgress="True"
 ProgressChanged="BackgroundWorker_ProgressChanged"
 WorkerSupportsCancellation="True"/>
</Window.Resources>

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 9

Next, the Cancel Button event handler:

 private void cancelButton_Click(object sender, RoutedEventArgs e)
 {
 this.backgroundWorker.CancelAsync();
 }

You can see that we’re simply calling the CancelAsync method of the BackgroundWorker.

Next, add the cancellation logic to the DoSlowProcess:

 private int DoSlowProcess(int iterations,
 BackgroundWorker worker, DoWorkEventArgs e)
 {
 int result = 0;

 for (int i = 0; i <= iterations; i++)
 {
 if (worker != null)
 {
 if (worker.CancellationPending)
 {
 e.Cancel = true;
 return result;
 }
 if (worker.WorkerReportsProgress)
 {
 int percentComplete =
 (int)((float)i / (float)iterations * 100);
 worker.ReportProgress(percentComplete);
 }
 }

 Thread.Sleep(100);
 result = i;
 }

 return result;
 }

You can see that we added another conditional to check CancellationPending. If so, then we’ll set the
e.Cancel property of the DoWorkEventArgs and return from our method.

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 10

And finally, the RunWorkerCompleted:

 private void BackgroundWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 else if (e.Cancelled)
 {
 outputBox.Text = "Canceled";
 }
 else
 {
 outputBox.Text = e.Result.ToString();
 workerProgress.Value = 0;
 }
 startButton.IsEnabled = true;
 cancelButton.IsEnabled = false;
 }

Here, you can see that we are checking the e.Cancelled property of the EventArgs. If it’s true, then we’ll
put “Canceled” in the output box. One thing you’ll note: we are not resetting the progress bar in event of
cancellation. This is so that if you stop the process, you can still see how far it got before the
cancellation.

Now when we run the application, we’ll see that we have a long-running process that runs in the
background (keeping the UI responsive), an updating progress bar, and a working Cancel button.

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 11

Wrap Up
The BackgroundWorker component allows us to put long-running processes onto a background thread
without the usual complexities of threading. We have seen how we can get progress updates that we can
show in our UI as well as how to cancel a process before it has completed. In addition, we’ve seen that
even when updating our UI, we don’t have to worry about communicating across threads. It is all handled
for us in the component.

Probably the best thing about the BackgroundWorker is that it allows us to get our feet wet in the world of
threading in an easy and relatively safe way. Think about this the next time you come across an
application that is “Not Responding”. And do what you can to keep your UIs responsive for your users.

Happy coding!

BackgroundWorker Component presented by JeremyBytes.com
©Jeremy Clark 2010 Page 12

