
Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2011 Page 1

Quick Byte: Get Func<>-y

A quick intro to Func<T, TResult> by JeremyBytes.com

Overview
If you look into the LINQ extension methods, you will run across Func<T, TResult> quite a bit. If you see

a Func<> in a method definition, you can treat it like a big sign that says “Put your lambda expression

here.” What we’ll see is that Func<> is simply shorthand for creating a delegate. So, let’s take a look at

a simple delegate example. Note: this sample is very similar to the sample that Microsoft provides in

the Visual Studio Help for Func<T, TResult>.

Creating an Explicit Delegate
We’ll start out with an explicit delegate that we have already defined. You can download the sample

code here: http://www.jeremybytes.com/Downloads.aspx. The UI contains an input text box, a button,

and an output text block. Here’s the code behind the form (from MainWindow.xaml.cs):

using System;

using System.Windows;

namespace GetFuncY

{

 delegate string ConvertText(string input);

 public partial class MainWindow : Window

 {

 public MainWindow() ... // collapsed for clarity

 private void ProcessButton_Click(object sender, RoutedEventArgs e)

 {

 ConvertText convert = ConvertToUpper;

 OutputBox.Text = convert(InputBox.Text);

 }

 private string ConvertToUpper(string input)

 {

 return input.ToUpper();

 }

 }

}

First, notice that we have an explicit delegate (ConvertText) that takes a string as a parameter and

returns a string as the result. Next, notice that we have a private method (ConvertToUpper) that

matches that signature. This method simply converts the input string to uppercase and returns the

result.

http://www.jeremybytes.com/Downloads.aspx

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2011 Page 2

Now let’s look at the button click event handler. Inside the event handler, we have created an instance

of our delegate (convert) and assigned our private method to it. Then we invoke the delegate using

the input text box contents as the parameter and assigning the result to the output text block. The

running application looks like this:

This is obviously a very trivial example of setting up a delegate, and in the real world we probably

wouldn’t use a delegate like this. But we want to keep things simple to follow so we can concentrate on

the Func<>-y parts.

Getting Func<>-Y
If we look at the Visual Studio Help for Func<T, TResult>, we have the following definition: “Encapsulates

a method that has one parameter and returns a value of the type specified by the TResult parameter.”

And the syntax is defined as follows:

What this means is that Func<T, TResult> is a delegate that expects a T as the parameter, and TResult as

the return type. There are also other versions of Func, such as Func<T1, T2, TResult> which takes 2

parameters and returns a result. In .NET 3.5, this goes up to a total of 4 parameters (T1 – T4); .NET 4.0

has additional methods that go all the way up to 16 parameters (T1 – T16).

You’ll note that in our example above, our delegate takes a string parameter and has a string return

type. This means that instead of explicitly defining our ConvertText delegate, we can simply replace it

with a Func<string, string>.

using System;

using System.Windows;

namespace GetFuncY

{

 public partial class MainWindow : Window

 {

 public MainWindow() ... // collapsed for clarity

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2011 Page 3

 private void ProcessButton_Click(object sender, RoutedEventArgs e)

 {

 Func<string, string> convert = ConvertToUpper;

 OutputBox.Text = convert(InputBox.Text);

 }

 private string ConvertToUpper(string input)

 {

 return input.ToUpper();

 }

 }

}

Notice that our delegate declaration at the top of our namespace is gone. And instead of the

convert variable being of type ConvertText, it is now of type Func<string, string>. This still

means the same thing, and our ConvertToUpper method still matches the delegate signature (a single

string parameter and a string return type). The only difference is that we do not have to explicitly define

a separate delegate. We can simply use Func<>. If we run the application now, we will get exactly the

same results.

Moving to an Anonymous Delegate
We can do a little more refactoring by converting our named delegate to an anonymous delegate. We

do this by in-lining the body of the ConvertToUpper method. Here’s what that looks like:

using System;

using System.Windows;

namespace GetFuncY

{

 public partial class MainWindow : Window

 {

 public MainWindow() ...// collapsed for clarity

 private void ProcessButton_Click(object sender, RoutedEventArgs e)

 {

 Func<string, string> convert = delegate(string input)

 { return input.ToUpper(); };

 OutputBox.Text = convert(InputBox.Text);

 }

 }

}

In the assignment to convert, we use the delegate keyword, and then include the parameter and

body from the ConvertToUpper method. Since all of that code is in-line, we can remove the

ConvertToUpper method. This delegate is now known as an anonymous delegate since it no longer

has an explicit name (although the compiler will give it a name internally).

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2011 Page 4

Converting to a Lambda
A lambda expression is simply an anonymous delegate (with a few added features). This means that we

can further replace our anonymous delegate with a lambda expression by just removing the delegate

keyword and adding the “goes to” operator (=>) between the parameters and the method body:

using System;

using System.Windows;

namespace GetFuncY

{

 public partial class MainWindow : Window

 {

 public MainWindow() ...// collapsed for clarity

 private void ProcessButton_Click(object sender, RoutedEventArgs e)

 {

 Func<string, string> convert = (string input) =>

 { return input.ToUpper(); };

 OutputBox.Text = convert(InputBox.Text);

 }

 }

}

And since lambda expressions allow us to remove the parameter type, the parentheses (since we only

have one parameter), and the curly braces (since we only have one statement), we can reduce this even

further:

using System;

using System.Windows;

namespace GetFuncY

{

 public partial class MainWindow : Window

 {

 public MainWindow() ...// collapsed for clarity

 private void ProcessButton_Click(object sender, RoutedEventArgs e)

 {

 Func<string, string> convert = input => input.ToUpper();

 OutputBox.Text = convert(InputBox.Text);

 }

 }

}

If we run the application, we will see that we have exactly the same behavior.

Relating Func<> and Lambdas
What we can see is that Func<T, TResult> and lambda expressions go very well together. The “T”

becomes our parameter for the lambda. (If we had a Func<T1, T2, TResult>, then both the “T1” and

“T2” would be parameters for the lambda.) And the “TResult” is the type that we return from the

lambda body.

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2011 Page 5

This means that if we are using LINQ and find that the Enumerable.Where has a Func<TSource, bool> as

a parameter, we can replace this with a lambda expression that has TSource as the parameter and

returns a true/false value. If you want to see more of how lambdas and LINQ work together, you can

download “Learn to Love Lambdas” from the website: http://www.jeremybytes.com/Downloads.aspx.

Wrap Up
Func<T, TResult> is simply a way of specifying the signature of a delegate. This can save us from having

to add an explicit declaration in our code. But more importantly, if a method is expecting a Func<> as a

parameter, then we can simply drop in a lambda expression. And this is the best way of handling things

when dealing with LINQ extension methods. Hopefully you have a better understanding of Func<> and

how it can make your code more readable and lambda-friendly.

Happy Coding!

http://www.jeremybytes.com/Downloads.aspx

