

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2010 Page 1

Quick Byte: Extension Methods

A quick intro to Extension Methods by JeremyBytes.com

Overview
Extension methods allow you to add functionality to existing types by adding new methods without

deriving a new subtype. If you use LINQ, you will make use of extension methods. And if you use

ASP.NET MVC, it is very likely that you will create your own. So, let’s see how they work.

Creating an Extension Method
An extension method is created by declaring a public static class with a public static method.

You can download the sample code here: http://www.jeremybytes.com/Downloads.aspx. Here’s an

example (from JeremyBytes.Extensions project, JBExtensions.cs file):

 public static class JBExtensions

 {

 public static string ToDelimitedString<T>(

 this IEnumerable<T> input, string delimiter)

 {

 var output = new StringBuilder();

 foreach (var itm in input)

 {

 if (output.Length > 0)

 output.Append(delimiter);

 output.Append(itm.ToString());

 }

 return output.ToString();

 }

 }

This method is designed to take an IEnumerable<T> and a string delimiter, and return a single

string which is a delimited list of the items. The definition looks like a pretty standard static method;

the only difference is the this keyword before the first parameter.

Using an Extension Method
Now let’s take a look at how this method can be used. First, the standard way of using an extension

method (from JeremyBytes.UI project, MainPage.xaml.cs file):

http://www.jeremybytes.com/Downloads.aspx

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2010 Page 2

 private void MonthButton_Click(object sender, RoutedEventArgs e)

 {

 List<string> months = Months.GetMonths();

 MonthBox.Text = JBExtensions.ToDelimitedString(months, ", ");

 }

Using the static class JBExtensions, we call the ToDelimitedString method with 2 parameters.

List<T> implements IEnumerable<T> which is why we can pass the months object as the first

parameter. This is how we would normally call a static method.

But since we included the this keyword before the first parameter in our definition, we can use this

method as if it were an extension of our months object. Here’s the updated code:

 private void MonthButton_Click(object sender, RoutedEventArgs e)

 {

 List<string> months = Months.GetMonths();

 MonthBox.Text = months.ToDelimitedString(", ");

 }

Notice that instead of referencing the static class JBExtensions, we are simply using the months

variable which implements IEnumerable<T>. From here, we can call the ToDelimitedString

method directly, as if it were a member of the months object. Additional parameters (such as our

delimiter) are passed normally.

What we have essentially done here is extend the IEnumerable<T> behavior without creating a

derivative type (subtype). The extension will work with any object that implements IEnumerable<T>

(even if it was created by someone else in a different assembly). The sample code shows this with

another class that is a List<Person>:

 private void PersonButton_Click(object sender, RoutedEventArgs e)

 {

 List<Person> people = People.GetPeople();

 PersonBox.Text = people.ToDelimitedString(" | ");

 }

Guidelines
To create and use extension methods, you must follow these guidelines:

 Extension methods must be public static methods in a public static class. The class

name itself is unimportant.

 Extension methods are declared by including the this keyword in front of the first parameter.

The this keyword can only be used with the first parameter.

 Extension methods are used by including the namespace of the public static class in the

scope where the methods are to be used. This means that extension methods can be collected

in a shared library that is used across projects, if desired.

Extension Methods presented by JeremyBytes.com
©Jeremy Clark 2010 Page 3

To show these features, the sample project is broken up into multiple assemblies and namespaces. The

Months class, People class, and JBExtensions class all exist in their own namespaces in separate

assemblies. The UI project references these assemblies and has the namespaces in the using

statements in the MainPage.xaml.cs file.

If you remove the using JeremyBytes.Extensions; statement (or comment it out), then you can

see that the UI project will no longer compile. Add it back in, and you’ll see that you also get full

IntelliSense for the extension method on the extended type.

Real World Usage
LINQ is implemented with a number of extension methods. Take a look at the Help documentation for

IEnumerable<T> and you’ll see several dozen extension methods including things like Where(),

OrderBy(), Average(), and Count(). To use these methods in your own code, you just need to include the

System.Linq namespace in your project.

As far as creating your own extension methods, you are likely to do this if you use ASP.NET MVC. There

is the HtmlHelper class which is very useful in crafting your UI. If you want to do custom data

formatting, you simply add your own extension method(s) to the HtmlHelper class and then use them in

your View.

Wrap Up
Extension methods are a very powerful tool, allowing you to extend already existing types that you may

or may not have direct access to. LINQ uses extension methods quite liberally – in fact, extension

methods were created specifically to support LINQ with .NET 3.5. So even if you do not create your own

extension methods, understanding how to use them is a step forward in making your code readable and

maintainable.

Happy Coding!

