Clean Code Lab

Prerequisites:

· Visual Studio 2012 or 2013 -> http://www.visualstudio.com/downloads
· Resharper 8.2.0.x or newer -> http://www.jetbrains.com/resharper/download/
· StyleCop 4.7.4.9.0 or newer -> http://stylecop.codeplex.com
Note: The lab is possible without Resharper or StyleCop but the crucial part to show where the right tools can easy the work will be missed in that case.

Application Overview

The "Starter" folder contains the code files for this lab. Open the "CleanCodeWorkshop.sln" solution.

This is a console application allows to create a contact based on the user input, apply some business logic in form of input validation for the contact and then attempts to save the contact.
The application has the following logical parts/layers.
· UI Layer -> command line implementation with in- and output and defining the workflow
· Business logic -> validation of the contact to save
· Data Layer -> For saving the contact [the actual save is not implemented for simplicity reasons]
· Cross Cutting Concerns -> Logging in the application
Build the application (in Debug mode), and start the application in the debugger <F5>.

Lab Goals

The goal of the lap is to refactor the existing application by following Clean Code principles to be better maintainable. In a real project you should never ever do any code changes because of this reasons alone. Instead you should have a business justification to touch an area of the source code and in this situation you should apply and try to follow the Clean Code principles for better maintainable code:
· Better readable and well structured
· Extensible
· Testable
Note:
This should be accomplished by applying some or all of the follow best practices, design principles and patterns. Please note that for the basic lab this elements marked with (*) would be appropriate. For a more advanced implementation the elements marked as (A) could reasonable be applied for a more realistic implementation. The implementation of this in the class could be limited by the given time.
1) Design Principles & Best Practices:
a. Keep it simple stupid (KISS) (*)
b. Don’t repeat yourself (DRY) (*)
c. Separation of Concerns (SoC) (*)
d. Single Responsibility Principle (SRP) (*)
e. Information Hiding Principle (IHP) (*)
f. Open Close Principle (OCP)

2) Design Patterns
a. Inversion of Control (IOC)
i. Dependency Injection (DI) Constructor Injection (*)
ii. Ambient Context (A)
b. Composition Root (3 step pattern Register, Resolve & Release (A)
c. Repository Pattern (A)
d. Data Transfer Object (DTO) (*)
e. Adapter Pattern (A)
f. Abstract Factory Pattern (A)

3) Craftsmanship Principles
a. Naming
i. Meaningful Names (*)	
ii. Intention Revealing Names (*)
iii. Use Pronounceable Names (*)
iv. Use Searchable Names (*)
v. Avoid Encoding (Hungarian) (*)
vi. Don’t be cute
vii. Pick One Word per Concept (A)
viii. Use Problem Domain Names
b. Function Structure
i. Small – Do One Thing (*)
ii. One Level of Abstraction (A)
iii. No or only few Arguments (*)
iv. Have No Side Effects (*)
c. Class Structure
i. Class Organization (A)
ii. Encapsulation (*)
iii. Classes Should be Small (*)
iv. Cohesion
v. Organize for Change (A)
vi. Insolating from Change (A)
d. Comment’s Do’s and Do not
i. Explain Yourself in Code (*)
ii. Clarification (*)
iii. Warning of Consequences
iv. ToDo Comments (*)
v. API docs in Public APIs (A)
vi. Avoid Mumblings
vii. Avoid Redundant Comments (*)
viii. Avoid Misleading Comments
ix. Avoid Journal Comments
x. Avoid Noise Comments (*)
xi. Don’t use a Comment When you Use a
Method or a Variable (*)
xii. Commented-Out Code (A)
e. Formatting
i. Vertical Openness Between Concepts (A)
ii. Vertical Distance (A)
iii. Horizontal Alignment (A)
iv. Indentation (A)
v. Write Journey Style Code (*)
vi. Use Resharper & StyleCop Code Clean Up (*)

Basic Version

In the basic improved implementation of the original starting point is to create code better to maintain and test following some of the key principles and patterns marked above.

Hints

The logical structure and layer definition above basically give a reasonable outline for a minim of classes to have:
· UI Layer -> Program.cs including Main()
· Business logic -> ContactManager.cs
· Data Layer -> Class.cs as data structure
· Cross Cutting Concerns -> OperationResult.cs exists already for better status feedback including dynamic error and warning details, Logger.cs, ILogger.cs

Buy following the Constructor Injection design pattern for Dependency Inject the created classes can easily be decoupled from each other allow for easier extension and better testability.
By separating the actual program (UI Layer) in a different assembly from the building blocks used to build it on in other layers (business layer, data layer, cross cutting concerns) a decoupling of application logic from the actual used UI implementation can be achieved. This greatly help to isolate the project form the volatility of often changing UI requirements. Furthermore, it decouples the non UI layers from dependencies to the UI components easing the testability of the project
In a second step even if only a separate of actual application (program) from the application logic is done with 2 assemblies by the usage of namespaces the other components can easily be identified in their function and dependency allowing to decouple the project even more in the different areas business layer, data layer, cross cutting concerns.
[bookmark: _GoBack]By writing Journal Style code, using correct naming and formatting a better readability can be achieved. Applying of a common coding and style standard a consistency in the code base can be achieved allowing any developer on the project to more easily pick up and work on a different are of the code base. By enforcing these standards with tools like StyleCop & Code Analysis and by taking advantage of the integration with Resharper in particular the code clean up.

Advanced Version

For more advanced implementation several more principles and patterns can be applied as indicated before. Additional logical grouping can be included in form of additional assemblies, classes and interfaces. Also a stronger focus on design for better isolating change is a key focus.
Finally it can be expected to look how to avoid implementing code which already exists and can be reused in form of 3rd party libraries like for the logging or dependency injection.
In a more advanced implementation after refactoring the original starting point version the goal is to get even closer to a real world implementation as it would be if this would be a much bigger project. It could be noted that this implementation is blown a bit out of proportion for the actual amount of functionality provided. However the goal is to make this solution be more like the setup you would do in a bigger project with much more code and potentially involving different teams working on it.

Hints

As a consequence of this requirements a more detailed split of functionality if preferable. The existing code base could be refactored in more logical and physical separated units with the introduction of additional assemblies. The goal here would be apply the Information Hiding Principle and to separate the implementation from what is needed to incorporate the different components into a project. By the usage of interfaces and by separating out everything which includes the public contract (interfaces, enums, classes and structs) which is well defined and stable the setup allows a team to work on the consumption of a component for example the ContactManager while another team is actually implementing its functionality. Additionally, this easies the testability as it decouples the client consuming the functionality from the needed dependencies of the actual implementation.
For the ContactManager itself it probably makes sense to separate out the data layer part previously included in the ContactManager into a separate component following the repository pattern.
The logger is another area in such a scenario which probably should be implemented different. As many really good logging frameworks exists log4net, NLog, .NET framework based logging it does not make sense to create and maintain a self-written logging framework. Instead it is preferable to select an existing logging framework. To isolate the application of the risk of having the need to replace this 3rd party library later on for one reason or the other it is preferable to implement the Adaptor pattern.
By writing a small wrapper around the 3rd party component the actual project code is decoupled from the dependency of the 3rd party code following Separation of Concern principle having a single piece of code depending on this external dependency, allowing to easily replace it if required late on with no impact to the actual product code. Furthermore, this allows to adapt the general logging framework to specific needs in the project for logging.

End of Clean Code Lab
