
Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 1

Dependency Injection: A Practical
Introduction

An overview of the dependency injection pattern by JeremyBytes.com

Overview
It’s hard to turn around without hearing someone talking about Dependency Injection (at least if you are

talking to other developers). But what exactly is Dependency Injection (DI)? And why would we want to

use it?

It turns out that Dependency Injection is an extremely useful pattern in any non-trivial application (a

small application will get limited benefit from DI). Some of the big benefits include extensibility,

testability, and late binding.

We’ll start our exploration of Dependency Injection by looking at a non-DI application. We’ll see how

conventional development can leave us with tightly-coupled code (even when we think we have good

separation of concerns). Then we’ll see how adding DI to the application adds the extensibility and

testability to the application. Next, we’ll take a look at one of the many DI containers that are available

for us to use. Finally, we’ll see how we can get late-binding by moving our container configuration from

code to configuration (and the benefits and drawbacks of doing so).

We are just going to skim across the surface of Dependency Injection to get a good idea of some

practical uses in our code. These examples are from my own coding experiences and show how

Dependency Injection has been helpful for me. For a more in-depth look at DI, I highly recommend

Dependency Injection in .NET by Mark Seemann.

Before we get started, I’ll mention the S.O.L.I.D. principles. These are a set of 5 object-oriented design

(OOD) principles talked about by Robert C. Martin (a.k.a. Uncle Bob). If you do some quick internet

searches, you’ll find all sorts of references to SOLID and OOD. We won’t go into detail on the principles

here, but I’ll point out where the they pop-up.

What is Dependency Injection?
One of the issues with Dependency Injection is that there are dozens of definitions that describe the

pattern just a little bit differently. Seemann defines it as follows:

Dependency Injection is a set of software design principles and patterns that enable us to

develop loosely coupled code.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 2

And from Wikipedia:

Dependency injection is a software design pattern that allows a choice of component to be made

at run-time rather than compile time.

So, we’re looking at how we can create loosely-coupled code and also how we can move choices of how

our code fits together from compile time to runtime. That doesn’t sound too complicated, does it?

Some code samples will help us get started -- first, an application that does not use Dependency

Injection.

A Non-DI Sample
Our sample application will get data from a repository (using a WCF service). For the presentation layer,

we’ll use the MVVM (Model-View-ViewModel) pattern. (Don’t worry if you aren’t familiar with MVVM;

we’ll cover a few basics as we go.)

You can download the source code for the application from the website:

http://www.jeremybytes.com/Downloads.aspx. The sample code we’ll be looking at is built using .NET 4

and Visual Studio 2010 (however, everything will work with .NET 3.5 and .NET 4.5). The download

consists of two solutions, each with multiple projects. Two versions are included: a “starter” solution (if

you want to follow along) as well as the “completed” code.

To start with, we’ll be using WithoutDependencyInjection.sln. Here’s a quick overview of the

projects:

 NoDI.UI

A WPF application that contains our View (MainWindow.xaml).

 NoDI.Repository.Service

A class library that contains the PersonServiceRepository. This is how data is retrieved

from and persisted to the data store (through a WCF Service).

 DI.Common

A class library that contains the definition of the Person class. (It also contains some interfaces

that are not used in this solution.)

 People.Service

A WCF service that acts as our persistence layer for the data.

 NoDI.Presentation

A class library that contains our ViewModel (MainWindowViewModel.cs).

http://www.jeremybytes.com/Downloads.aspx

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 3

We’ll look at each of these projects more closely as we go. First, let’s run the application. When we

click the “Refresh People” button, we get the following:

Let’s start at the service layer and work our way to the UI.

People.Service

In our People.Service project, we have PersonService.svc.cs (details abbreviated):

 public class PersonService : IPersonService

 {

 public List<Person> GetPeople()...

 public Person GetPerson(string lastName)...

 public void AddPerson(Person newPerson)...

 public void UpdatePerson(string lastName, Person updatedPerson)...

 public void DeletePerson(string lastName)...

 public void UpdatePeople(List<Person> updatedPeople)...

 }

For simplicity, this service returns hard-coded values for the GetPeople method (the method we’ll be

using in these samples). The Person class simply has four properties (from Person.cs in DI.Common):

 public class Person

 {

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime StartDate { get; set; }

 public int Rating { get; set; }

 }

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 4

NoDI.Repository.Service

Next, we’ll look at the NoDI.Repository.Service project. First, note that this project contains a

Service Reference to the PersonService above. The PersonServiceRepository is an

implementation of the repository pattern. The idea behind the repository pattern is that we can put a

layer of abstraction between our application and the data storage layer – this will become clearer when

we get to our DI examples a bit later.

For now, the PersonServiceRepository contains methods that look very similar to the service

methods:

 public class PersonServiceRepository

 {

 public IPersonService ServiceProxy { get; set; }

 public PersonServiceRepository()

 {

 ServiceProxy = new PersonServiceClient();

 }

 public IEnumerable<Person> GetPeople()

 {

 return ServiceProxy.GetPeople();

 }

 public Person GetPerson(string lastName)

 {

 return ServiceProxy.GetPerson(lastName);

 }

 public void AddPerson(Person newPerson)...

 public void UpdatePerson(string lastName, Person updatedPerson)...

 public void DeletePerson(string lastName)...

 public void UpdatePeople(IEnumerable<Person> updatedPeople)...

 }

Notice that in the constructor, we are “new”ing up an instance of PersonServiceClient (our WCF

service proxy).

NoDI.Presentation

NoDI.Presentation contains our View Model. When using the MVVM pattern, the “VM”

(ViewModel) is the part of the presentation layer that is responsible for exposing properties and

commands that the UI can use for data binding. The View Model gets data from the Model (in this case,

our repository) and then exposes a set of properties that can be used by the View (which we’ll see in just

a bit).

Here is our (slightly abbreviated) code from MainWindowViewModel.cs:

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 5

 public class MainWindowViewModel : INotifyPropertyChanged

 {

 protected PersonServiceRepository Repository;

 private IEnumerable<Person> _people;

 public IEnumerable<Person> People

 {

 get { return _people; }

 set

 {

 if (_people == value)

 return;

 _people = value;

 OnPropertyChanged(new PropertyChangedEventArgs("People"));

 }

 }

 public MainWindowViewModel()

 {

 Repository = new PersonServiceRepository();

 }

 //INotifyPropertyChanged Members...

 //RefreshCommand Standard Stuff...

 public void Execute(object parameter)

 {

 ViewModel.People = ViewModel.Repository.GetPeople();

 }

 // ClearCommand Standard Stuff...

 public void Execute(object parameter)

 {

 ViewModel.People = new List<Person>();

 }

 }

A few things to note here: first, notice that our class implements INotifyPropertyChanged. This is

an interface that is used for data binding in the XAML world (WPF, Silverlight, Windows Phone, etc.); it

ensures that the UI is properly notified when the underlying data values are changed. The

implementation for INotifyPropertyChanged is pretty boiler-plate, so it has been excluded from

this snippet.

Next, we have a class-level variable for the PersonServiceRepository (note that the constructor

instantiates this variable).

We also have a People property. This contains our actual collection of Person objects that are

returned from the repository. These will be used to populate the list box in the UI.

Finally, we have two commands. I’ve only included the interesting bits here – the Execute method for

each of our commands. RefreshCommand’s Execute method calls the GetPeople from the

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 6

repository and uses the results to populate the People property. In contrast, the ClearCommand

resets the People property to an empty collection.

Commands are used here because they can be easily data bound to buttons in XAML. This lets us

minimize the code-behind that we have in our View files (which we’ll see in just a moment). If you want

more details, you can look up “Commanding Overview” in Visual Studio Help or MSDN.

NoDI.UI

NoDI.UI is our WPF application. This contains the View part of our MVVM implementation. As

mentioned earlier, MVVM works by allowing the View (our XAML) to data bind to properties exposed in

our View Model. This keeps the code in our View to a minimum and gives us good separation between

our presentation (the XAML) and the logic that drives it (the view model). For more information on

MVVM, you can take a look at “Overview of the MVVM Design Pattern” on my blog:

http://jeremybytes.blogspot.com/2012/04/overview-of-mvvm-design-pattern.html.

If we look at MainWindow.xaml, we can see where items are data bound to our view model:

 <!-- Refresh List Button -->

 <Button x:Name="RefreshButton" Grid.Column="0" Grid.Row="0" Margin="5"

 Content="Refresh People"

 Command="{Binding RefreshPeopleCommand}"

 Style="{StaticResource GoButtonStyle}" />

 <!-- Clear Button -->

 <Button x:Name="ClearButton"

 Grid.Column="0" Grid.Row="4"

 FontSize="16" Padding="7,3" Margin="5"

 Content="Clear Data"

 Style="{StaticResource ClearButtonStyle}"

 Command="{Binding ClearPeopleCommand}" />

 <!-- List Box -->

 <ListBox x:Name="PersonListBox"

 Grid.Column="1" Grid.Row="0" Grid.RowSpan="5"

 Margin="5"

 BorderBrush="DarkSlateGray" BorderThickness="1"

 ScrollViewer.HorizontalScrollBarVisibility="Disabled"

 ItemsSource="{Binding People}"

 ItemTemplate="{StaticResource PersonListTemplate}">

 <ListBox.ItemsPanel>

 <ItemsPanelTemplate>

 <WrapPanel />

 </ItemsPanelTemplate>

 </ListBox.ItemsPanel>

 </ListBox>

Notice that the Command properties for the buttons are data bound to the appropriate commands in the

view model. With this binding in place, when we click the “Refresh People” button, the Execute

method of the RefreshPeopleCommand will fire. For the ListBox, the ItemSource property is data

bound to our People property from the view model.

http://jeremybytes.blogspot.com/2012/04/overview-of-mvvm-design-pattern.html

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 7

The last step is to associate the View (MainWindow.xaml) with the View Model

(MainWindowViewModel.cs). This is done in the code-behind – MainWindow.xaml.cs:

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 ViewModel = new MainWindowViewModel();

 }

 public MainWindowViewModel ViewModel

 {

 get { return (MainWindowViewModel)this.DataContext; }

 set

 {

 this.DataContext = value;

 }

 }

 }

Here, we have a property (ViewModel) which is of type MainWindowViewModel. We set this property

to the DataContext of the window (this). The constructor creates a new instance of

MainWindowViewModel and sets it to the ViewModel property. This has the effect of setting the data

context (i.e. our data binding source) of our entire window to the MainWindowViewModel. This is how

our Binding statements in the XAML know where to find the properties that they bind to.

This Looks Pretty Good, Doesn’t It?
Okay, so that was quite a bit of code to go through. And at first glance, it looks like we’re adhering to

some good object-oriented design principles – such as the Single Responsibility Principle (the S in

S.O.L.I.D.). The Single Responsibility Principle states that an object should have one (and only one)

reason to change – meaning that it does one thing and does it well.

In our project, we have a separation of concerns – the view, view model, repository, and service are all

in their own separate classes. This helps with maintainability because we know where to make updates

if we need to make changes. If it is related to the presentation logic, it goes in the view model; if it is

related to the data interaction, it goes in the repository.

The Illusion
Having this separation of concerns would lead us to believe that this code is loosely-coupled. After all,

everything is separated out and has its own place, right? Unfortunately, this is not the case. In reality,

our code is very tightly coupled. Let’s walk the code (this time from the View end) to find our problem.

The View is Tightly-Coupled to the View Model

Consider this piece of code from our View:

 ViewModel = new MainWindowViewModel();

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 8

Because the constructor of the View is “new”ing up a specific instance of MainWindowViewModel, it is

tightly-coupled to that class. It has a direct reference to the View Model, and we cannot build our View

unless the assembly for MainWindowViewModel is also present at compile time. But things get worse.

The View Model is Tightly-Coupled to the Repository

Consider this piece of code from our View Model:

 Repository = new PersonServiceRepository();

Because the constructor of the View Model is “new”ing up a specific instance of

PersonServiceRepository, it is tightly-coupled to that class. But it gets even worse.

The Repository is Tightly-Coupled to the Service

Consider this piece of code from our Repository:

 ServiceProxy = new PersonServiceClient();

Because the constructor of the Repository is “new”ing up a specific instance of

PersonServiceClient, it is tightly-coupled to that class. And this leads us to a horrible realization.

The View is Tightly-Coupled to the Service

Because of all of the tight-coupling, the View is tightly-coupled to the Service (through the View Model

and Repository). YIKES!

Granted, the application that we have here is trivial and this tight-coupling might not seem that bad.

After all, with an application of this size, it isn’t that difficult to modify and keep track of everything that

is going on. But we’re just using this as a simple example that we can easily wrap our heads around

without getting too caught up in complex business logic. When we start to look at applications of

significant size, then things change immensely.

The Result of Tight-Coupling
So why should we care about this tight coupling? Here are a few scenarios to consider (which we will

address with Dependency Injection).

Scenario 1: An Additional Repository

Application requirements are ever-changing. With experience, we get to know the areas that are more

likely to change (depending on our business environment). For this example, I can easily imagine that

we will want to add other data storage options for our clients – perhaps by saving to a SQL Server (or

other database) or to a text file (either CSV or XML).

But how would we handle an additional repository with this code? We would need to modify the View

Model so that it would instantiate a PersonServiceRepository or a PersonSQLRepository or a

PersonCSVRepository. And each time we add a new repository type, we would need to modify our

View Model again. Our goal should be to eliminate the tight-coupling so that we can add a Repository

without needing to modify (or even recompile) our View Model.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 9

Scenario 2: A Caching Repository

Calls to the data store are “expensive” (travelling across the wire and talking to another server).

Wouldn’t it be great if we could cache some of the data on the client side? That way, we would not

have to make network calls each time we need to access data that seldom changes.

We can easily build a caching repository that will handle this for us, but we run into the same problem as

above – we need to modify our View Model code to accept this new repository. Plus, we need some

way to make our caching repository flexible so that it will work with the service repository or the SQL

repository or the CSV repository.

Scenario 3: Unit Testing

One big thing that is missing from our current solution is Unit Testing. Unit Testing allows us to

automate testing of isolated sections of our code. But since our current code is tightly-coupled, we have

no easy way to isolate those sections for testing. (It’s not impossible, but it would be much easier to

refactor the code than to put together the test harness required to isolate functions). We need to be

able to test our View Model without the Repository code getting in the way. And we need to be able to

test our Repository code without the Service code getting in the way.

So, in short, our goal should be to add some “seams” that allow us to isolate the code for testing

without bringing in all of the tightly-coupled dependencies that we have now.

Dependency Injection to the Rescue
Dependency Injection can help us address these scenarios to make our code easily extensible, improve

testability, and even include runtime changes that don’t require us to recompile the application.

Let’s take a look at the other solution in our sample code: DependencyInjection.sln:

These projects are similar to the projects from the previous solution, so we won’t go through complete

descriptions here. The basic elements are the same – with some variations that we’ll see as we go

along.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 10

Let’s start by using Dependency Injection to break up some of our tight-coupling.

Injecting the Repository into the View Model
One of the principles of good object-oriented design is to program to an interface rather than a concrete

type. We can break the tight-coupling between the View Model and the Repository by adding a

repository interface. This will add a layer of abstraction between our two components. For more

information on Interfaces, please see “IEnumerable, ISaveable, IDontGetIt: Understanding .NET

Interfaces” (available here: http://www.jeremybytes.com/Demos.aspx#INT).

The DI.Common project contains the IPersonRepository interface. This interface was extracted

from PersonServiceRepository. (To extract an interface, right click on the name of the class,

choose “Refactor” and then “Extract Interface”. Then just follow the prompts.)

 public interface IPersonRepository

 {

 IEnumerable<Person> GetPeople();

 Person GetPerson(string lastName);

 void AddPerson(Person newPerson);

 void UpdatePerson(string lastName, Person updatedPerson);

 void DeletePerson(string lastName);

 void UpdatePeople(IEnumerable<Person> updatedPeople);

 }

This interface has been added to the PersonServiceRepository:

 public class PersonServiceRepository : IPersonRepository

Note that since we extracted the interface from this class, it already implements all of the required

members.

Now that we have an interface, we can create additional repository classes that implement the same

interface. The PersonCSVRepository is just such a class. You can check the class in the

DI.Repository.CSV project for the implementation details.

A side note about the Repository interface: IPersonRepository will only work for the Person class.

If we had another object type (such as Product), we would need to create a separate interface.

As an alternative, we could use an interface with generic parameters to create an interface that

can be used across types. IRepository<T, TKey> is just such an interface and has been included

for reference. For more information on Generics, see “T, Earl Grey, Hot: Generics in .NET” (at

http://www.jeremybytes.com/Demos.aspx). For this example, we are using IPersonRepository

for simplicity.

http://www.jeremybytes.com/Demos.aspx#INT
http://www.jeremybytes.com/Demos.aspx

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 11

Constructor Injection

Now that we have our abstraction, the only thing left is to add it as an injected dependency to our View

Model. As a reminder, here’s what our MainWindowViewModel.cs looked like before:

 public class MainWindowViewModel : INotifyPropertyChanged

 {

 protected PersonServiceRepository Repository;

 public MainWindowViewModel()

 {

 Repository = new PersonServiceRepository();

 }

 ...other members removed

 }

Rather than having the constructor “new” up a concrete type, we’ll pass an instance in to the class as a

constructor parameter:

 public class MainWindowViewModel : INotifyPropertyChanged

 {

 protected IPersonRepository Repository;

 public MainWindowViewModel(IPersonRepository repository)

 {

 Repository = repository;

 }

 ...other members removed

 }

First, notice that we have changed our Repository variable type from PersonServiceRepository

to IPersonRepository – we are using an abstraction (the interface) rather than a concrete type. This

allows the Repository variable to accept any class that implements the IPersonService interface

(including PersonServiceRepository, PersonCSVRepository, plus any other new repositories we

may create in the future). This makes our code extensible while remaining unchanged. This is referred

to as the Open-Closed Principle (the O in the S.O.L.I.D. principles) – the code is open for extension but

closed for modification.

These changes also help us adhere to the Dependency Inversion Principle (the D in S.O.L.I.D.) –

abstractions should not depend upon details; details should depend upon abstractions. In our code,

instead of depending on a concrete type, we have shifted our dependency to an abstraction (our

IPersonRepository interface).

To inject the dependency into our class, we have added a constructor parameter that uses our interface.

This method is known as Constructor Injection. This is a preferred method for injecting dependencies

into a class. The primary advantage is that we know exactly what dependencies need to be fulfilled by

looking at the constructor.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 12

Injecting the View Model into the View
So far, so good. We’ve managed to de-couple our View Model from a specific implementation of the

Repository. But now we have another problem. Our code won’t build. Since we removed the default

(no parameter) constructor from the View Model, our View won’t compile. As a reminder, here is our

MainWindow.xaml.cs code (from the DI.UI project):

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 ViewModel = new MainWindowViewModel();

 }

 public MainWindowViewModel ViewModel

 {

 get { return (MainWindowViewModel)this.DataContext; }

 set

 {

 this.DataContext = value;

 }

 }

 }

We get an error on the following line:

 ViewModel = new MainWindowViewModel();

Now, we could add the required parameter to the MainWindowViewModel constructor. This would

mean creating an instance of the Repository we want to use, but this really wouldn’t accomplish our

goals. Instead, we’ll use Constructor Injection on the View as well (to inject the View Model). Here’s

our updated View code:

 public partial class MainWindow : Window

 {

 public MainWindow(MainWindowViewModel vm)

 {

 InitializeComponent();

 ViewModel = vm;

 }

 public MainWindowViewModel ViewModel

 {

 get { return (MainWindowViewModel)this.DataContext; }

 set

 {

 this.DataContext = value;

 }

 }

 }

This is great; we’re now injecting the View Model dependency into our View, so the View is no longer

responsible for creating the instance. We could take this a step further and extract an interface from

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 13

our View Model, but we won’t do that here. In a larger system where View and View Models tend to be

more mix-and-match, this would be an excellent idea. But we’ll just stick with the concrete type in our

sample.

Composing the Dependency Graph
So, this hasn’t really solved our problem, either. When a WPF application starts, it looks for the

StartupUri (in the App.xaml file) that points to the XAML that will be used as the application’s main

window. The issue is that WPF expects that this startup object has a default (no parameter) constructor.

Since we removed our default constructor, we need to create the window a bit differently. Here’s what

we’ll do – in the App.xaml file, remove the following attribute from the opening Application tag:

 StartupUri="MainWindow.xaml"

Now, we’ll add a bit of code to App.xaml.cs:

 public partial class App : Application

 {

 protected override void OnStartup(StartupEventArgs e)

 {

 base.OnStartup(e);

 ComposeObjects();

 Application.Current.MainWindow.Show();

 }

 private void ComposeObjects()

 {

 var repository = new PersonServiceRepository();

 var viewModel = new MainWindowViewModel(repository);

 Application.Current.MainWindow = new MainWindow(viewModel);

 }

 }

First, we have overridden the OnStartup method of the App class. The goal of this is to create the

main window for the application (manually in code) and then Show it. This will replace the functionality

of the StartupUri that we removed above. But this also means that we can use a parameterized

constructor for the View.

We also have a separate ComposeObjects method. This gives us what is referred to as a Composition

Root. This is the location where we will wire up all of the dependencies for our object graph. Notice

what we are doing in the ComposeObjects method:

1. We instantiate a concrete Repository object (from any class that implements

IPersonRepository). In this case, we instantiate PersonServiceRepository.

2. We instantiate the View Model. Since our View Model takes a Repository as a parameter, we

pass in our newly-created repository.

3. We instantiate the View and pass it our newly-created viewModel. Then we assign this as the

Application’s main window.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 14

We can now successfully build the solution. If we run the application, we will see the same results that

we had earlier. But here’s the difference: we’ve removed the tight-coupling from our code. The View

Model is no longer tightly-coupled to the PersonServiceRepository. And because we broke this

coupling, our View is no longer tightly-coupled to the Service.

In fact, we can easily swap out the repository by changing one line of code in our ComposeObject

method:

 var repository = new PersonCSVRepository();

If you’re following along with the code, there’s one other thing that needs to be updated for the

application to run. In the App.config file, there is a path to the Person.txt file (this is the file that

contains the data for the PersonCSVRepository). You will need to update the configuration to where

you have saved the sample code.

Our old code would have required that we make changes to the View Model in order to use a different

Repository. But since we’ve broken the coupling (and used DI to inject the Repository), the View Model

no longer cares about the concrete type it is using as long as that type implements the appropriate

interface (IPersonRepository). So, no matter how many new repositories we add, we will never

have to update our View Model (whoo hoo!).

If we make these changes for the CSV repository and run the application, we get a slightly different

result:

There is an additional Person (Jeremy Awesome) in the CSV file. This is so that it is easy to tell if we are

using the Service repository or the CSV repository.

Let’s go ahead and swap back to the PersonServiceRepository before continuing to the next

example.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 15

Caching Repository
Above, we talked about adding a caching repository – this would keep a client-side copy of the data so

that we don’t have to make a server call each time we ask for data. Another requirement is that the

caching repository needs to work with whatever concrete repository we want – whether the

PersonServiceRepository, PersonCSVRepository, or some other repository. This makes it an

ideal candidate for using a Decorator Pattern with Dependency Injection.

The Decorator Pattern

The Decorator Pattern is a very simple idea. It describes a way for us to wrap an existing type, add some

functionality, and expose the same interface as the original type. This makes it a drop-in replacement

for the existing type.

As an aside, this could be seen as adhering to the Liskov Substitution Principle (the L in S.O.L.I.D.)

– subtypes must be substitutable for their base types. Technically, we are using object

composition and interfaces rather than direct inheritance, but the 100%-compatible object

replacement fits the general principle.

Let’s see how this works. Our solution contains a CachingServiceRepository class (in

DI.Caching.Repository):

 public class CachingPersonRepository : IPersonRepository

 {

 private TimeSpan _cacheDuration = new TimeSpan(0, 0, 30);

 private DateTime _dataDateTime;

 private IPersonRepository _personRepository;

 private IEnumerable<Person> _cachedItems;

 public CachingPersonRepository(IPersonRepository personRepository)

 {

 _personRepository = personRepository;

 }

 private bool IsCacheValid

 {

 get

 {

 var _cacheAge = DateTime.Now - _dataDateTime;

 return _cacheAge < _cacheDuration;

 }

 }

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 16

 private void ValidateCache()

 {

 if (_cachedItems == null || !IsCacheValid)

 {

 try

 {

 _cachedItems = _personRepository.GetPeople();

 _dataDateTime = DateTime.Now;

 }

 catch

 {

 _cachedItems = new List<Person>()

 {

 new Person(){ FirstName="No Data Available",

 LastName = string.Empty, Rating = 0,

 StartDate = DateTime.Today},

 };

 }

 }

 }

 private void InvalidateCache()

 {

 _dataDateTime = DateTime.MinValue;

 }

 ... interface implementation skipped (for now)

 }

First, notice that CachingPersonRepository implements IPersonRepository. This is important

so that we can use it as a drop-in replacement where we would use any of our other repositories. Next,

we have a series of variables to help us keep track of the cache.

 _cacheDuration – Specifies how long the cache should be valid. In our case, this is set to 30

seconds (so that we can see the change relatively quickly). In a real-world app, we would

probably want to pass this in as a parameter.

 _dataDateTime – Specifies the date/time that our data was last updated. This is used to

calculate whether the cache is still valid.

 _personRepository – This is our “wrapped” repository. If we look at the constructor, we can

see that this instance is injected.

 _cachedItems – This is our client-side data cache.

Next, we have a constructor with our repository instance injected. Then, we have the ValidateCache

method with our caching logic. This does some quick math to determine whether the current

_cachedItems is still valid. If it is not valid, then we make a call to the wrapped repository’s

GetPeople method to refresh the cache. Notice the catch block: if we can’t successfully call the

wrapped repository (for example, loss of network connectivity), then a default “No Data Available”

record is returned.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 17

Next we have an InvalidateCache method. This allows us to force an update of the data on the next

access.

To see how these methods are used, let’s look at the IPersonRepository implementation:

 public IEnumerable<Person> GetPeople()

 {

 ValidateCache();

 return _cachedItems;

 }

 public Person GetPerson(string lastName)

 {

 ValidateCache();

 return _cachedItems.FirstOrDefault(p => p.LastName == lastName);

 }

 public void AddPerson(Person newPerson)

 {

 _personRepository.AddPerson(newPerson);

 InvalidateCache();

 }

 public void UpdatePerson(string lastName, Person updatedPerson)

 {

 _personRepository.UpdatePerson(lastName, updatedPerson);

 InvalidateCache();

 }

 public void DeletePerson(string lastName)

 {

 _personRepository.DeletePerson(lastName);

 InvalidateCache();

 }

 public void UpdatePeople(IEnumerable<Person> updatedPeople)

 {

 _personRepository.UpdatePeople(updatedPeople);

 InvalidateCache();

 }

For our two “Get” methods, we call ValidateCache (which will refresh the client-side data, if required)

and then return data based on the client-side data.

For the methods that modify data, we call the wrapped repository’s methods and then call

InvalidateCache. This will force us to get fresh (updated) data from the wrapped repository on the

next “Get” call.

So overall, this code is not very complex. But because we are injecting the underlying repository

(through Constructor Injection), this will work with any concrete repository we wish.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 18

Composing Objects with the Caching Repository

In order to use the caching repository, we just need to change our Composition Root (in App.xaml.cs).

Here’s our updated code:

 public partial class App : Application

 {

 protected override void OnStartup(StartupEventArgs e)

 {

 base.OnStartup(e);

 ComposeObjects();

 Application.Current.MainWindow.Show();

 }

 private void ComposeObjects()

 {

 var wrappedRepository = new PersonServiceRepository();

 var repository = new CachingPersonRepository(wrappedRepository);

 var viewModel = new MainWindowViewModel(repository);

 Application.Current.MainWindow = new MainWindow(viewModel);

 }

 }

In composing our objects, first we instantiate the wrapped repository – in this case

PersonServiceRepository. Then we instantiate our caching repository by passing it the

instantiated wrappedRepository. Then we pass the caching repository to our view model just like we

would pass any other repository instance.

And that is all the code we need to modify in our application. We do not need to modify the View, the

View Model, or the underlying Repository. We simply compose our objects differently when injecting

our dependencies.

This is the power of Dependency Injection.

Testing the Cache

So, let’s try out the code. If we run the application, we get the expected result:

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 19

Now, here’s where things get interesting. We’re running the WCF service in the Cassini Server (the

development server that comes with Visual Studio). Use Alt-Tab (or use the tray icon) to get to the

ASP.NET Development Server:

Click the “Stop” button. This will shut down our WCF Service. Now, back in our application, click the

“Clear Data” button to clear the list box, then click “Refresh People” again. If our cache is working (and

less than 30 seconds have passed since our last refresh), we should see the following:

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 20

This shouldn’t surprise us too much. After all, we’re just hitting the client-side data cache. But if we

wait 30 seconds, and try again, we get the following:

Since the WCF Service is not running, the PersonServiceRepository throws an exception when

trying to connect to the service. This gets caught by the CachingPersonRepository and displayed as

the record above.

What this has shown is that our client-side cache is working – it returns data even when the service is

not available (at least until the cache expires).

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 21

Unit Testing
So, we’ve seen how Dependency Injection can help us make our code more extensible and maintainable.

But it can also help us make our code more testable. Unit Testing is a huge topic in itself. We’ll just

touch on a few points here.

As we mentioned regarding our first (non-DI) sample, it would be very difficult to unit test the View

Model because we could not easily isolate the various parts. Since the View Model was tightly-coupled

to a Repository, that repository would need to be included in the test as well. If the Repository failed, it

could impact our test even though we weren’t trying to test that part of the code.

But since we are now using DI to eliminate that tight-coupling, we have good “seams”. This makes it

extremely easy to create a mock of the dependency so that we can focus on testing the View Model

code in isolation. Let’s see exactly what that means.

Testing the View Model
These test projects are using MSTest (which is included with some (but not all) versions of Visual Studio).

If you do not have MSTest available, you won’t be able to run these projects, but can still follow along

with the code. The same principles apply to other unit test tools (such as NUnit).

Take a look at the DI.Presentation.Test project. Here, we have a unit test class for our View

Model (MainWindowViewModelTest).

 [TestClass]

 public class MainWindowViewModelTest

 {

 IPersonRepository _repository;

 [TestInitialize]

 public void Setup()

 {

 var people = new List<Person>()

 {

 new Person() {FirstName = "John", LastName = "Smith"...,

 new Person() {FirstName = "Mary", LastName = "Thomas"...,

 };

 var repoMock = new Mock<IPersonRepository>();

 repoMock.Setup(r => r.GetPeople()).Returns(people);

 _repository = repoMock.Object;

 }

 [TestMethod]

 public void People_OnRefreshCommand_IsPopulated()...

 [TestMethod]

 public void People_OnClearCommand_IsEmpty()...

 }

A quick overview of the tests: first, we have a class-level IPersonRepository variable

(_repository). We are going to use this to hold our mock repository. A mock object is a placeholder

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 22

object that acts as a stand in for a real object. Mock objects are usually created by some sort of mocking

framework (such as Moq or RhinoMocks) and allow us to configure specific behavior, if we like.

Next, we have a Setup method. Since this is marked with the TestInitialize attribute, it will be run

before each TestMethod is run. In the Setup, we first create a hard-coded collection of Person objects

for our tests to use. Then we use the Moq framework to create a new mock object based on the

IPersonRepository interface. We don’t really have the space to go into details about mocking here.

In short, this code is creating a mock repository and specifying that if someone calls the GetPeople

method on the mock object, it should return our hard-coded people collection.

As a side note: I’ve been using Moq in my own unit testing and have had good success with it. (There are

other good mocking tools available as well.) A couple things I like about Moq are the fluent interface

and that it is contained in a single, bin-deployable assembly (Moq.dll). The Moq assembly is included in

the “AdditionalAssemblies” folder in the code download.

The last line in Setup assigns our mocked repository to our IPersonRepository variable. So, let’s

see how this is used in the tests themselves:

 [TestMethod]

 public void People_OnRefreshCommand_IsPopulated()

 {

 // Arrange

 var vm = new MainWindowViewModel(_repository);

 // Act

 vm.RefreshPeopleCommand.Execute(null);

 // Assert

 Assert.IsNotNull(vm.People);

 Assert.AreEqual(2, vm.People.Count());

 }

This test verifies that when the RefreshPeopleCommand is executed, the People property of the View

Model is populated. The first step is to create an instance of our View Model. Notice that we are

passing our mocked repository as the parameter for this – this is the “seam” that we mentioned earlier.

The next step is to execute the RefreshPeopleCommand. The last step is to verify the results – by

checking that People is not null and that it contains the two items expected from our test data.

Pay careful attention to what we are testing and what we are not testing. We want to test the

operation of the RefreshPeopleCommand (code from the View Model). We do not want to test

whether the Repository is working properly (at least not in this test). With Dependency Injection, we

are able to isolate our code by injecting a mock repository instead of an actual one. This ensures that

any exceptions or test failures will be related to the code we are trying to test and not due to some

failure in an external dependency (such as a failed network connection). Note: we do want to also test

that all of our components work together (integration testing), but this is separate from unit testing

(which is focused on testing isolated work units).

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 23

Testing the Service Repository
In addition to testing the View Model, we also want to test our Repository. And in the case of the

PersonServiceRepository, we want to try to isolate the Repository code from the Service code.

We’ll use Dependency Injection for this as well. But instead of using Constructor Injection, we’ll use

Property Injection.

Property Injection

Property Injection is a little more difficult to grasp, so let’s take a look at some code as explanation. Our

PersonServiceRepository originally looked like this:

 public class PersonServiceRepository

 {

 public IPersonService ServiceProxy { get; set; }

 public PersonServiceRepository()

 {

 ServiceProxy = new PersonServiceClient();

 }

 ...other members removed

 }

In this code, we have a public property for the Service, and the constructor is responsible for

instantiating an instance of that service.

Our updated code looks like this:

 public class PersonServiceRepository : IPersonRepository

 {

 private IPersonService _serviceProxy;

 public IPersonService ServiceProxy

 {

 get

 {

 if (_serviceProxy == null)

 _serviceProxy = new PersonServiceClient();

 return _serviceProxy;

 }

 set

 {

 if (_serviceProxy == value)

 return;

 _serviceProxy = value;

 }

 }

 // Constructor has been deleted from the class

 ...other members removed

 }

We have removed the default constructor from the code. Instead of instantiating the Service in the

constructor, we will instantiate it in the getter for the ServiceProxy property. Now why would we do

this?

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 24

Let’s consider two scenarios. Scenario A: We instantiate the Repository and then start calling the

methods (GetPeople, etc.). When we call a method, it will use the ServiceProxy property. Since the

backing field will be null, it will automatically instantiate a PersonServiceClient for us to use. This is

the default behavior (and the behavior that we want in production runs).

Scenario B: We instantiate the Repository and then set the ServiceProxy property before calling any

of the methods. By setting the property, we are injecting a dependency into the Repository. When we

call the methods, it will use the Service instance that we injected (rather than the default instance).

Property Injection is the injection of dependencies based on writable properties. This is useful when we

have a valid default value. Whether the default is overridden is entirely up to the consumer of the class.

If there is no valid default value, then we should use Constructor Injection or some other method to

ensure that the dependency is always set.

Property Injection in Unit Tests

Now that we have our Repository configured for injection of the Service (through the writeable

property), we can use this as a “seam” for our tests.

Take a look at the DI.Repository.Service.Test project. Here, we have a unit test class for our

View Model (PersonServiceRepositoryTest).

 [TestClass]

 public class PersonServiceRepositoryTest

 {

 IPersonService _service;

 [TestInitialize]

 public void Setup()

 {

 var people = new List<Person>()

 {

 new Person() {FirstName = "John", LastName = "Smith"...,

 new Person() {FirstName = "Mary", LastName = "Thomas"...,

 };

 var svcMock = new Mock<IPersonService>();

 svcMock.Setup(s => s.GetPeople()).Returns(people.ToArray());

 _service = svcMock.Object;

 }

 [TestMethod]

 public void GetPeople_OnExecute_ReturnsPeople()...

 [TestMethod]

 public void GetPerson_OnExecuteWithValidValue_ReturnsPerson()...

 [TestMethod]

 public void GetPerson_OnExecuteWithInvalidValue_ReturnsNull()...

 }

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 25

This setup is almost exactly the same as the setup for the View Model test. The difference is that we are

mocking the Service (IPersonService) instead of the Repository. We then place that mocked service

into the _service variable.

Here is a test method:

 [TestMethod]

 public void GetPeople_OnExecute_ReturnsPeople()

 {

 // Arrange

 var repo = new PersonServiceRepository();

 repo.ServiceProxy = _service;

 // Act

 var output = repo.GetPeople();

 // Assert

 Assert.IsNotNull(output);

 Assert.AreEqual(2, output.Count());

 }

Things are a little bit different here. Our first statement instantiates PersonServiceRepository

(using the default constructor). Next, we inject our mocked service through the repository’s

ServiceProxy property. This means that any calls we make to the service will go through the mock

that we generated in our test setup. The rest of this method calls the GetPeople method and validates

the results.

So, by using Property Injection, we have added a “seam” to our code that makes it more easily testable.

When our application runs, it will automatically pick up the default value (PersonServiceClient)

that is supplied for the property. But when we test, we can use a mock of the Service to isolate the

Repository code.

Dependency Injection with a Container
So far, we have implemented Dependency Injection by wiring up our dependencies manually in our

composition root. But the most common way of using Dependency Injection is with a third-party

dependency injection container / framework. These offer numerous advantages over building our own

dependency injection container – including lifetime management, configuration, and dependency

resolution.

The good news is that there are quite a few DI containers available for free (and many are open-source

as well). These include Unity, Castle Windsor, Ninject, Autofac, StructureMap, Spring.NET, and several

others. They offer similar features, and making a selection may be dependent on other factors. As an

example, the DI container in Spring.NET is part of a much larger framework, and this framework is a .NET

version of the Spring framework for Java. This would be a good choice to ensure consistency across

.NET and Java environments.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 26

In our samples, we will be using Unity from the Microsoft Patterns & Practices team. It is available as a

free download and is bin-deployable (meaning, we just need to include the assemblies in our output

folder). Functionality is broken down into several assemblies; this allows us to deploy only the functions

that we are using. In these samples, we will be using the base assembly

(Microsoft.Practices.Unity.dll) and the configuration assembly

(Microsoft.Practices.Unity.Configuration.dll).

Unity offers several ways of configuring the DI container, including configuration in code, XML

configuration, and auto-discovery of types in searched assemblies. We’ll be looking at the first two

methods here. Unity has a lot of features, and we’ll only look at a few of them. I would encourage you

to explore the Unity documentation to learn the details of what is available.

Configuration in Code
First, we’ll configure our Unity container in code. We’ll see that this is very similar to our manual

configuration, but we will get added benefits. Let’s take a look at the DI.UI.Container project (be

sure to set this as the StartUp Project if you’re following along).

In this project, we have already added a reference to Microsoft.Practices.Unity.dll (again, this

is available in the AdditionalAssemblies folder in the code download). So, let’s take a look at

App.xaml.cs.

First, we have an additional using statement:

using Microsoft.Practices.Unity;

Here is the App class:

 public partial class App : Application

 {

 IUnityContainer Container;

 protected override void OnStartup(StartupEventArgs e)

 {

 base.OnStartup(e);

 ConfigureContainer();

 ComposeObjects();

 Application.Current.MainWindow.Show();

 }

 private void ConfigureContainer()

 {

 Container = new UnityContainer();

 Container.RegisterType<IPersonRepository, PersonServiceRepository>

 (new ContainerControlledLifetimeManager());

 }

 private void ComposeObjects()

 {

 Application.Current.MainWindow = Container.Resolve<MainWindow>();

 }

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 27

 }

We have added a class level variable for our Unity container (Container). In our OnStartup method,

we have added a new call to ConfigureContainer. This method is responsible for configuring the

Unity container with the types we will use for our dependencies.

In ConfigureContainer, we instantiate our Unity container. Then we call the RegisterType

method to associate the PersonServiceRepository with the IPersonRepository interface. This

lets the Unity container know that anytime we ask for an IPersonRepository, it should give us an

instance of PersonServiceRepository. The parameter for this method is a lifetime manager.

Lifetime management is a big topic (and one of the primary reasons we use a third-party container as

opposed to building our own). Lifetimes determine whether we get new instances each time we ask for

a dependency, whether we get the same instance each time, or some other variation.

In this case we are using the Unity ContainerControlledLifetimeManager. This is the Singleton

lifetime in Unity, meaning that each time we resolve the dependency, we will reuse the same (shared)

instance each time. The default lifetime for Unity is a Transient lifetime. With a Transient lifetime,

Unity would provide us with a new (non-shared) instance of the dependency each time we ask for it.

There are other lifetimes as well. For a thorough discussion, refer to Mark Seemann’s book mentioned

above.

Resolving the Dependencies from the Container

Now that we have our Unity container configured, we can let the container inject the dependencies for

us. We do this by asking the container to resolve an object.

 Application.Current.MainWindow = Container.Resolve<MainWindow>();

Compare this to the line of code from our manually-wired project:

 Application.Current.MainWindow = new MainWindow(viewModel);

In the previous project, we instantiated the MainWindow class ourselves. But here, we ask the Unity

container to resolve the MainWindow for us. This leads to a couple of questions.

How can we resolve a type (MainWindow) when we never registered that type with container? The

answer is that if we ask Unity for a concrete type (and the container can figure out where to find that

type), then it will instantiate the object for us automatically. Notice that our project contains references

to our class libraries; this allows Unity to resolve concrete types from these assemblies.

What about the dependencies? When we instantiated MainWindow ourselves, we had to give it a

MainWindowViewModel as a parameter. How does Unity deal with this? The answer is that when we

ask Unity to resolve a type (such as MainWindow), it looks through all of the constructors for that type

and looks for the constructor with the most parameters that it can figure out how to resolve.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 28

In our case, MainWindow has a single constructor that takes a MainWindowViewModel parameter.

Since MainWindowViewModel is a concrete type, Unity can figure out how to instantiate it as well.

When Unity looks at MainWindowViewModel, it finds the constructor that takes an

IPersonRepository. Since we registered PersonServiceRepository during configuration, the

container knows what type to instantiate for this dependency. When the container instantiates

PersonServiceRepository, it finds only the default constructor. Unity automatically wires all of

these dependencies together for us when we make a request to Resolve the MainWindow.

When we run the application, we get the expected results that we’ve seen before.

As you can imagine, if we want to swap out the PersonCSVRepository for the

PersonServiceRepository, we just need to change the RegisterType method call in the

ConfigureContainer method.

Late Binding and XML Configuration
Imagine that our application is deployed to multiple client sites. One of our clients would like to have a

repository that uses an Oracle database. Wouldn’t it be great if we could ship that client just the new

repository assembly without needing to recompile the entire application? That’s exactly what late

binding gives us.

By using XML configuration with Unity, we can specify which types to load from specific assemblies.

Then all we need to do to deploy a new repository is to ship the repository assembly and update the

configuration file. The core application remains unchanged.

Take a look at the DI.UI.LateBinding project (be sure to set it as the StartUp Project). Here is the

code in App.xaml.cs:

First we have references to two Unity assemblies:

using Microsoft.Practices.Unity;

using Microsoft.Practices.Unity.Configuration;

As mentioned earlier, Unity ships functionality in separate assemblies. The XML configuration

functionality is in the .Configuration assembly (which is added in our project references as well).

Here’s the rest of the App class:

 public partial class App : Application

 {

 IUnityContainer Container;

 protected override void OnStartup(StartupEventArgs e)

 {

 base.OnStartup(e);

 ConfigureContainer();

 ComposeObjects();

 Application.Current.MainWindow.Show();

 }

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 29

 private void ConfigureContainer()

 {

 Container = new UnityContainer();

 Container.LoadConfiguration();

 }

 private void ComposeObjects()

 {

 Application.Current.MainWindow = Container.Resolve<MainWindow>();

 }

 }

Notice that instead of registering types in our ConfigureContainer method, we make a call to

LoadConfiguration. This will load the Unity configuration from the App.config file. (Note: Unity

only allows configuration to be loaded from App.config and not from an arbitrary XML file.)

Configuration consists of two parts. First, the configSection:

 <configSections>

 <section name="unity"

type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection,

Microsoft.Practices.Unity.Configuration"/>

 </configSections>

Then the configuration itself:

 <unity>

 <namespace name="DI.Common" />

 <namespace name="DI.Repository.Service" />

 <assembly name="DI.Common" />

 <assembly name="DI.Repository.Service" />

 <container>

 <register type="IPersonRepository" mapTo="PersonServiceRepository">

 <lifetime type="ContainerControlledLifetimeManager" />

 </register>

 </container>

 </unity>

First, we let Unity know what assemblies and namespaces we are using. We specify two different

assemblies/namespaces here since the interface comes from one (DI.Common) and the concrete type

comes from another (DI.Repository.Service).

Next, we have our register element. Just like when we configured the container in code, this

associates the concrete type PersonServiceRepository with the interface IPersonRepository.

Notice that we can also configure the lifetime manager here.

This results in truly dynamic loading of these assemblies and types. Note that this project does not have

any reference to the DI.Repository.Service assembly; it is not included in the project references.

We just need to make sure that Unity can locate this assembly. In our case, we copy the dll into the

appropriate bin folder of our project – this is done through a post-build event on the

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 30

DI.Repository.Service project for this sample. But we just need to copy the dll over to our output

folder.

When we run the application, we get the same results as before. If we want to change to the

PersonCSVRepository, we just need to update the configuration file and make sure that the

DI.Repository.CSV.dll is in the bin folder. (The sample code already contains the assembly and

namespace references in configuration to make this easier to change. Don’t forget to update the file

path for the CSV repository as well.)

Pros and Cons of XML Configuration

We’ve already seen the advantages of XML configuration – it allows us to do late binding. We can

update the functionality of our application by simply changing configuration. There is no need to

recompile. But this comes at a cost.

The cost, in this case, is brittleness. We don’t get any compile-time checks of our container

configuration. This means that if we have any errors in the XML (such as a mistyped assembly name or

interface), we will get runtime errors when the types are being resolved.

In contrast, when we configure the container in code, we get the compile-time checks that would

prevent these types of errors, but we lose the late-binding capability.

The good news is that we can mix and match our configuration methods. A recommended approach is

that we use XML configuration only for those elements for which we need late binding. For everything

else, we can put the configuration in code to take advantage of the compile-time checks.

Unit Testing with a Container
Unit testing with a DI container is very similar to the unit testing that we saw earlier. The difference is

that in our setup method, we will configure our DI container; and in our tests, we will Resolve objects

from the container rather than instantiating them ourselves.

Let’s go back to the DI.Presentation.Test project and take a look at

ContainerMainWindowViewModelTest.cs. As you can imagine, we need to add the Unity

assemblies to our project references (and as a using statement in the test class). Here is our setup

code:

 IUnityContainer _container;

 [TestInitialize]

 public void Setup()

 {

 _container = new UnityContainer();

 var people = new List<Person>()

 {

 new Person() {FirstName = "John", LastName = "Smith"...,

 new Person() {FirstName = "Mary", LastName = "Thomas"...,

 };

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 31

 var repoMock = new Mock<IPersonRepository>();

 repoMock.Setup(r => r.GetPeople()).Returns(people);

 // Once we have our mock, we register it with the DI container

 _container.RegisterInstance<IPersonRepository>(repoMock.Object);

 }

This code is almost the same as our non-container test. The difference is that instead of having an

IPersonRepository variable that we use for dependencies, we have an IUnityContainer. After

we go through the mocking process, we register the instance with the Unity container.

RegisterInstance is a bit different from what we did in our application code. In this case, we have

an already-instantiated type (our mock repository object) that we want to use for our dependencies.

When we register an instance with the Unity container, we are telling the container to return this

particular instance whenever we ask for the IPersonRepository interface.

Our test code is a little different as well:

 [TestMethod]

 public void People_OnRefreshCommand_IsPopulated()

 {

 // Arrange

 var vm = _container.Resolve<MainWindowViewModel>();

 // Act

 vm.RefreshPeopleCommand.Execute(null);

 // Assert

 Assert.IsNotNull(vm.People);

 Assert.AreEqual(2, vm.People.Count());

 }

Instead of instantiating a MainWindowViewModel, we ask the container for an instance. As noted

earlier, Unity will look through the constructors, find one with an IPersonRepository dependency,

and then inject our mock repository into the constructor. So the result is the same, we end up with an

instance of the MainWindowViewModel with a mock repository injected.

Property Injection with Unity

So, we’ve seen how Unity handles constructor injection, but what about Property Injection? If you

remember, we have a test for our Repository that injects the Service through a writable property. We

can do this with Unity as well.

Let’s take a look at ContainerPersonServiceRepositoryTest.cs. First the setup:

 IUnityContainer _container;

 [TestInitialize]

 public void Setup()

 {

 _container = new UnityContainer();

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 32

 var people = new List<Person>()

 {

 new Person() {FirstName = "John", LastName = "Smith"...,

 new Person() {FirstName = "Mary", LastName = "Thomas"...,

 };

 var svcMock = new Mock<IPersonService>();

 svcMock.Setup(s => s.GetPeople()).Returns(people.ToArray());

 _container.RegisterInstance<IPersonService>(svcMock.Object);

 _container.RegisterType<PersonServiceRepository>(

 new InjectionProperty("ServiceProxy"));

 }

Just like before, we mock up the Service object. But notice how we configure our Unity container. The

call to RegisterInstance will associate our mock service with the IPersonService interface (very

similar to our last test).

The call to RegisterType is a little different. Here we are specifying that we want to explicitly register

the PersonServiceRepository type. This method accepts a parameter array of InjectionMember

– ways of giving Unity specific instructions about how to inject dependencies. In this case, we are using

InjectionProperty (to specify that we want to use Property Injection). The parameter is the name

of the parameter that should be injected (ServiceProxy).

This allows us to write the following test code:

 [TestMethod]

 public void GetPeople_OnExecute_ReturnsPeople()

 {

 // Arrange

 var repo = _container.Resolve<PersonServiceRepository>();

 // Act

 var output = repo.GetPeople();

 // Assert

 Assert.IsNotNull(output);

 Assert.AreEqual(2, output.Count());

 }

Notice that we ask the container to provide us with an instance of PersonServiceRepository. The

container will check its configuration and see that we have specified that the ServiceProxy property

should be injected. Since ServiceProxy is an IPersonService, Unity will assign our configured

mock service as the value of ServiceProxy.

Wrap Up
We’ve seen a lot of samples and have gone through a lot of DI concepts. We have seen how we can use

Dependency Injection to break tightly-coupled components into isolated, loosely-coupled components.

We have used DI to add seams to our code to improve testability. We have seen a number of

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2012 Page 33

Dependency Injection patterns such as Constructor Injection and Property Injection. We have looked at

wiring up dependencies in a Composition Root and how to use a DI container to resolve dependencies in

our object graph.

We’ve also seen how Dependency Injection can help us adhere to the S.O.L.I.D. principles. These are

principles of good object-oriented design, and as with other design principles, they have been shown to

lead to better code in many situations. The one we didn’t mention (the “I”) is the Interface Segregation

Principle. This principle has to do with how we split up our methods into different interfaces so that

classes only have dependencies on methods they use. It’s a good principle, but we didn’t run across the

need to talk about it in our sample code. As mentioned in the introduction, the S.O.L.I.D. principles are

a good topic to explore further.

After all of this, we have barely scratched the surface of Dependency Injection. Hopefully, this has given

you a good taste of the subject as well as a practical guide of how DI can be used in real code. I would

highly encourage further exploration on the topic. As mentioned, Dependency Injection in .NET by Mark

Seemann is a good place to get more comprehensive information. There are more patterns to learn,

more complex scenarios to explore, more “gotchas” to watch out for.

Dependency Injection is an extremely powerful set of patterns. It is not necessarily appropriate for

every situation. But, as always, more tools in our toolbox make us more versatile developers.

Happy coding!

