Dependency Injection: A Practical
Introduction

An overview of the dependency injection pattern by JeremyBytes.com

Overview

It's hard to turn around without hearing someone talking about Dependency Injection (at least if you are
talking to other developers). But what exactly is Dependency Injection (DI)? And why would we want to
use it?

It turns out that Dependency Injection is an extremely useful pattern in any non-trivial application (a
small application will get limited benefit from DI). Some of the big benefits include extensibility,
testability, and late binding.

We'll start our exploration of Dependency Injection by looking at a non-DI application. We'll see how
conventional development can leave us with tightly-coupled code (even when we think we have good
separation of concerns). Then we’ll see how adding DI to the application adds the extensibility and
testability to the application. Next, we’ll take a look at two of the many DI containers that are available
for us to use. Finally, we’ll see how we can get late-binding by moving our container configuration from
code to configuration (and the benefits and drawbacks of doing so).

We are just going to skim across the surface of Dependency Injection to get a good idea of some
practical uses in our code. These examples are from my own coding experiences and show how
Dependency Injection has been helpful for me. For a more in-depth look at DI, | highly recommend
Dependency Injection in .NET by Mark Seemann.

Before we get started, I'll mention the S.O.L.I.D. principles. These are a set of 5 object-oriented design
(OO0D) principles talked about by Robert C. Martin (a.k.a. Uncle Bob). If you do some quick internet
searches, you'll find all sorts of references to SOLID and OOD. We won’t go into detail on the principles
here, but I'll point out where they pop-up.

What is Dependency Injection?
One of the issues with Dependency Injection is that there are dozens of definitions that describe the
pattern just a little bit differently.

Wikipedia is a good place to start. And since it’s nerds arguing with nerds, it’s bound to have a pretty
good definition. Here it is (at least at the time of this writing):

Dependency injection is a software design pattern that allows a choice of component to be made
at run-time rather than compile time.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 1

Unfortunately, Wikipedia fails us a bit. It mentions run-time decisions (also called late binding), but
Dependency Injection is much more than that.

So, let’s see what Mark Seeman has to say:

Dependency Injection is a set of software design principles and patterns that enable us to
develop loosely coupled code.

| like this definition much better. Dependency Injection is all about how to create loosely coupled code
(and this enables late binding, among other things).

So, we’re looking at how we can create loosely-coupled code.

Why Loosely-Coupled Code?

Loosely-coupled code helps us in a number of areas. Here are just a few:

Extensibility

Extensibility is the ability to easily add new functionality to code. The “easily” part means that we can
make updates in well-isolated areas rather than needing to update bits and pieces throughout the code
base.

Late Binding

As mentioned, late binding is the ability to choose what components we use at run-time rather than
compile-time. We can only do this if our code is loosely-coupled — our code only cares about
abstractions rather than a particular concrete type. This lets us swap components without needing to
modify our code.

Parallel Development

If our code is loosely-coupled, it makes it easier for multiple development teams to work on the same
project. We can have one team working in the business layer, and a different team working in the
service layer. Because the layers are independent, the teams will be in different source files that don’t
directly affect each other.

Maintainability
When our components are independent, the functionality is isolated. This means that if we need to
hunt down bugs or tweak functionality, we know exactly where to look.

Testability

Unit testing is a hugely important topic. The primary goal of unit tests is to test small pieces of code in
isolation. When we have loosely-coupled code, we can easily put in mock or fake dependencies so that
we can easily isolate the parts of the code that we actually want to test.

Also, as mentioned earlier, we will run across several of the S.0.L.1.D. principles as we look at
Dependency Injection.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 2

Dependency Injection Patterns
There are a number of design patterns that are used in DI.

Constructor Injection
Property Injection
Method Injection

=A =4 =4 =

Ambient Context
I Service Locator

WEe'll be looking at Constructor Injection and Property Injection here, since these are the primary
patterns. You may want to look into the others as you get more comfortable with Dependency
Injection.

This may sound a bit complicated, and you’re probably wondering if you really want to get involved in
Dependency Injection. In reality, these patterns and principles are not that complicated. We’ll work our
way into them slowly so that we have a good idea of what’s going on.

Some code samples will help us on our journey -- first, an application that does not use Dependency
Injection.

A Non-DI Sample

Our sample application will get data from a repository (using a WCF service). For the presentation layer,
we’ll use the MVVM (Model-View-ViewModel) pattern. (Don’t worry if you aren’t familiar with MVVM;
we’ll cover a few basics as we go.)

You can download the source code for the application from the website:
http://www.jeremybytes.com/Downloads.aspx. The sample code we’ll be looking at is built using .NET
4.5 and Visual Studio 2012 (however, everything will work with .NET 3.5 and .NET 4.0). The download
consists of two solutions, each with multiple projects. Two versions are included: a “starter” solution (if

you want to follow along) as well as the “completed” code.

To start with, we'll be using WithoutDependencylnjection.sin . Here’s a quick overview of the
projects:

] Solution 'WithoutDependencylnjection' (5 projects)
4 | Application
4 @l Repository
B MoDl.Repository.Service
4] Service
[DI.Commen
'3 @ People.Service
b MoDl.Presentation

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 3

http://www.jeremybytes.com/Downloads.aspx

1 NoDILUI

A WPF application that contains our View (MainWindow.xaml).

1 NoDI.Repository.Service
A class library that contains the PersonServiceRepository

. This is how data is retrieved

from and persisted to the data store (through a WCF Service).

1 DIlL.Common

A class library that contains the definition of the Person class. (It also contains some interfaces

that are not used in this solution.)

1 People.Service

A WCEF service that acts as our persistence layer for the data.

1 NoDlI.Presentation

A class library that contains our ViewModel (MainWindowViewModel.cs).

We'll look at each of these projects more closely as we go. First, let’s run the application. When we
click the “Refresh People” button, we get the following:

17 Dependency inection T N ., (=]
Y et =

Refresh People

Clear Data

X

John Koenig

1975
6/10 Stars

John Crichton
1999
7/10 Stars

John Sheridan
1994
6/10 Stars

Isaac Gampu
1977
4/10 Stars

Dylan Hunt
2000
8/10 Stars

Dave Lister
1988
9/10 Stars

DET LT ELE]
2000
5/10 Stars

Let’s start at the service layer and work our way to the Ul.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com

©Jeremy Clark 2013

Page 4

The Service Layer - People.Service

In our People.Service project, we have PersonService.svc.cs (details abbreviated):
public class PersonService . IPersonService

public List <Person > GetPeople()

public Person GetPerson(string lastName)

public void AddPerson(Person newPerson) ...

public void UpdatePerson(string lastName, Person updatedPerson)
public void DeletePerson(string lastName)

public void UpdatePeople(List <Person > updatedPeople)
}

For simplicity, this service returns hard-coded values for the GetPeople method (the method we’ll be
using in these samples). The Person class simply has four properties (from Person.cs in DI.Common):

public class Person

{
public string FirstName { get; set;}
public string LastName { get; set;}
public DateTime StartDate { get; set;}
public int Rating { get; set;}

}

The Repository Layer - NoDI.Repository.Service

Next, we’ll look at the NoDI.Repository.Service project. First, note that this project contains a
Service Reference to the PersonService above. The PersonServiceRepository isan
implementation of the repository pattern. The idea behind the repository pattern is that we can put a
layer of abstraction between our application and the data storage layer — this will become clearer when
we get to our DI examples a bit later.

For now, the PersonServiceRepository contains methods that look very similar to the service
methods:

public class PersonServiceRepository

{

public IPersonService ServiceProxy { get; set;}

public PersonServiceRepository()

{
ServiceProxy = new PersonServiceClient 0;
}
public IEnumerable <Person > GetPeople()
{
return ServiceProxy.GetPeople();
}

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 5

}

Notice that in the constructor, we are “new”ing up an instance of PersonServiceClient

public Person GetPerson(string lastName)

{
}

public void AddPerson(Person newPerson) ...

return ServiceProxy.GetPerson(lastName);

public void UpdatePerson(string lastName, Person updatedPerson)

public void DeletePerson(string lastName)

public void UpdatePeople(|Enumerable <Person > updatedPeople)

service proxy).

The View Model Layer - NoDI.Presentation

NoDI.Presentation

contains our View Model. When using the MVVM pattern, the “VM”
(ViewModel) is the part of the presentation layer that is responsible for exposing properties and

(our WCF

commands that the Ul can use for data binding. The View Model gets data from the Model (in this case,

our repository) and then exposes a set of properties that can be used by the View (which we’ll see in just

a bit).

Here is our (slightly abbreviated) code from MainWindowViewModel.cs

public class MainWindow ViewModel : INotifyPropertyChanged

{

protected PersonServiceRepository Repository;

private I[Enumerable <Person > _people;
public IEnumerable <Person > People

{
get { return _people;}
set
{
if (_people == value)
return ;
_people = value ;
Raise PropertyChanged("People");
}
}
public MainWindowViewModel()
{
Repository = new PersonServiceRepository 0;
}

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013

Page 6

/I RefreshCommand Standard Stuff

public void Execute(object parameter)

{
}

/I ClearCommand Standard Stuff

ViewModel.People = ViewModel.Repository.GetPeople();

public void Execute(object parameter)

{
ViewModel.People = new List <Person >();
}
/I INotifyPropertyChanged Members
}
A few things to note here: first, notice that our class implements INotifyPropertyChanged . Thisis

an interface that is used for data binding in WinForms and XAML (WPF, Silverlight, Windows Phone,
etc.); it ensures that the Ul is properly notified when the underlying data values are changed. The

implementation for INotifyPropertyChanged is pretty boiler-plate, so it has been excluded from
this snippet.
Next, we have a class-level variable for the PersonServiceRepository (note that the constructor

instantiates this variable).

We also have a People property. This contains our actual collection of Person objects that are
returned from the repository. These will be used to populate the list box in the UL.

Finally, we have two commands. I've only included the interesting bits here — the Execute method for
each of our commands. RefreshCommand ‘s Execute method calls the GetPeople from the
repository and uses the results to populate the People property. In contrast, the ClearCommand
resets the People property to an empty collection.

Commands are used here because they can be easily data bound to buttons in XAML. This lets us
minimize the code-behind that we have in our View files (which we’ll see in just a moment). If you want
more details, you can look up “Commanding Overview” in Visual Studio Help or MSDN.

The View Layer - NoDI.UI

NoDI.Ul is our WPF application. This contains the View part of our MVVM implementation. As
mentioned earlier, MVVM works by allowing the View (our XAML) to data bind to properties exposed in
our View Model. This keeps the code in our View to a minimum and gives us good separation between
our presentation (the XAML) and the logic that drives it (the view model). For more information on
MVVM, you can take a look at “Overview of the MVVM Design Pattern” on my blog:
http://jeremybytes.blogspot.com/2012/04/overview-of-mvvm-design-pattern.html.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 7

http://jeremybytes.blogspot.com/2012/04/overview-of-mvvm-design-pattern.html

If we look at MainWindow.xaml , we can see where items are data bound to our view model:

<! -- Refresh List Button - >

<Button

x: Name="RefreshButton"

Content ="Refresh People"

Command"{ Binding

RefreshPeopleCommand }"

Style ="{ StaticResource

<! -- Clear Button - >

<Button x: Name="ClearButton"
Grid.Column ="0" Grid.Row ="4"
FontSize ="16" Padding ="7,3"
Content ="Clear Data"
Style ="{ StaticResource
Commané"{ Binding

<! -- List Box - >

<ListBox x: Name="PersonListBox"

GoButtonStyle }" />

Margin ="5"

ClearButtonStyle }
ClearPeopleCommand }" />

Grid.Column ="1" Grid .Row="0" Grid.RowSpan ="5"

Margin ="5"
BorderBrush ="DarkSlateGray"
ScrollViewer.HorizontalScrollBarVisibility
ItemsSource ="{ Binding People }"
ltemTemplate ="{ StaticResource

<ListBox.ltemsPanel >
<ltemsPanelTemplate >

<WrapPanel />

</ ltemsPanelTemplate >

</ ListBox.ltemsPanel >

</ ListBox >

BorderThickness ="1"

="Disabled"

PersonListTemplate ~ }">

Grid.Column ="0" Grid.Row ="0" Margin ="5"

Notice that the Commandproperties for the buttons are data bound to the appropriate commands in the

view model. With this binding in place, when we click the “Refresh People” button, the Execute

method of the RefreshPeopleCommand will fire. For the ListBox ,the ltemSource property is data

bound to our People property from the view model.

The last step is to associate the View (MainWindow.xaml) with the View Model

(MainWindowViewModel.cs

public partial class MainWindow Window
{
public MainWindow()
{
InitializeComponent();
ViewModel = new MainWindowViewModel ();
}
public MainWindowViewModel ViewModel
{
get { return (MainWindowView Model) this
set
{
this .DataContext = value ;
}
}

). This is done in the code-behind — MainWindow.xaml.cs

.DataContext; }

Dependency Injection: A Practical Introduction presented by JeremyBytes.com

©Jeremy Clark 2013

Page 8

Here, we have a property (ViewModel) which is of type MainWindowViewModel . We set this property
to the DataContext of the window (this). The constructor creates a new instance of
MainWindowViewModel and sets it to the ViewModel property. This has the effect of setting the data
context (i.e. our data binding source) of our entire window to the MainWindowViewModel . This is how
our Binding statements in the XAML know where to find the properties that they bind to.

This Looks Pretty Good, Doesn’t It?
Okay, so that was quite a bit of code to go through. Here’s a review of the layers:

i View Layer

The Ul elements (XAML)
I View Model Layer

The presentation logic
I Repository Layer

The data interaction logic
9 Service Layer

The actual data access

And at first glance, it looks like we’re adhering to some good object-oriented design principles — such as
the Single Responsibility Principle (the Sin S.0.L.I1.D.). The Single Responsibility Principle states that an
object should have one (and only one) reason to change — meaning that it does one thing and does it
well.

In our project, we have a separation of concerns — the view, view model, repository, and service are all
in their own separate classes. This helps with maintainability because we know where to make updates
if we need to make changes. If it is related to the presentation logic, it goes in the view model; if it is
related to the data interaction, it goes in the repository.

The Illusion

Having this separation of concerns would lead us to believe that this code is loosely-coupled. After all,
everything is separated out and has its own place, right? Unfortunately, this is not the case. In reality,
our code is very tightly coupled. Let’s walk the code (this time from the View end) to find our problem.

The View is Tightly-Coupled to the View Model
Consider this piece of code from our View:

ViewModel = new MainWindowViewModel ();

Because the constructor of the View is “new”ing up a specific instance of MainWindowViewModel , it is
tightly-coupled to that class. It has a direct reference to the View Model, and we cannot build our View
unless the assembly for MainWindowViewModel is also present at compile time. But things get worse.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 9

The View Model is Tightly-Coupled to the Repository
Consider this piece of code from our View Model:

Repository = new Pers onServiceRepository 0;

Because the constructor of the View Model is “new”ing up a specific instance of
PersonServiceRepository , it is tightly-coupled to that class. But it gets even worse.

The Repository is Tightly-Coupled to the Service
Consider this piece of code from our Repository:

ServiceProxy = new PersonServiceClient 0;

Because the constructor of the Repository is “new”ing up a specific instance of
PersonServiceClient , it is tightly-coupled to that class. And this leads us to a horrible realization.

The View is Tightly-Coupled to the Service
Because of all of the tight-coupling, the View is tightly-coupled to the Service (through the View Model
and Repository). YIKES!

Granted, the application that we have here is trivial, and this tight-coupling might not seem that bad.
After all, with an application of this size, it isn’t that difficult to modify and keep track of everything that
is going on. But we’re just using this as a simple example that we can easily wrap our heads around
without getting too caught up in complex business logic. When we start to look at applications of
significant size, then things change immensely.

The Result of Tight-Coupling
So why should we care about this tight coupling? Here are a few scenarios to consider (which we will
address with Dependency Injection).

Scenario 1: An Additional Repository

Application requirements are ever-changing. With experience, we get to know the areas that are more
likely to change (depending on our business environment). For this example, | can easily imagine that
we will want to add other data storage options for our clients — perhaps by saving to a SQL Server (or
other database) or to a text file (either CSV or XML).

But how would we handle an additional repository with this code? We would need to modify the View
Model so that it would instantiate a PersonServiceRepository or a PersonSQLRepository ora

PersonCSVRepository . And each time we add a new repository type, we would need to modify our
View Model again. Our goal should be to eliminate the tight-coupling so that we can add a Repository

without needing to modify (or even recompile) our View Model.

Scenario 2: A Caching Repository
Calls to the data store are “expensive” (traveling across the wire and talking to another server),
especially on a mobile device. Wouldn’t it be great if we could cache some of the data on the client

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 10

side? That way, we would not have to make network calls each time we need to access data that
seldom changes.

We can easily build a caching repository that will handle this for us, but we run into the same problem as
above — we need to modify our View Model code to accept this new repository. Plus, we need some
way to make our caching repository flexible so that it will work with the service repository or the SQL
repository or the CSV repository.

Scenario 3: Unit Testing

One big thing that is missing from our current solution is Unit Testing. Unit Testing allows us to
automate testing of isolated sections of our code. But since our current code is tightly-coupled, we have
no easy way to isolate those sections for testing. (It’s not impossible, but it would be much easier to
refactor the code than to put together the test harness required to isolate functions). We need to be
able to test our View Model without the Repository code getting in the way. And we need to be able to
test our Repository code without the Service code getting in the way.

So, in short, our goal should be to add some “seams” that allow us to isolate the code for testing
without bringing in all of the tightly-coupled dependencies that we have now.

Dependency Injection to the Rescue
Dependency Injection can help us address these scenarios to make our code easily extensible, improve
testability, and even include runtime changes that don’t require us to recompile the application.

Let’s take a look at the other solution in our sample code: Dependencylnjection.sin

fa] Sclution 'Dependencylnjection’ (12 projects)
4 | Application
[DI.UI.Container.Unity
[DI.UI.ContainerNinject
[DI.Ul.LateBinding
Wl Repository
[Dl.CachingRepository
[DI.Repository.CSV
[DI.Repository.Service
4 @l Service
I E Pecple.Service
4] Tests
b @ Sclution ltems
2 DI.Presentation.Test
I DI.Repository.Service. Test
DI.Common
DI.Presentation

[%

v v

These projects are similar to the projects from the previous solution, so we won’t go through complete
descriptions here. The basic elements are the same — with some variations that we’ll see as we go
along.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 11

Let’s start by using Dependency Injection to break up some of our tight-coupling.

Injecting the Repository into the View Model

One of the principles of good object-oriented design is to program to an interface rather than a concrete
type. We can break the tight-coupling between the View Model and the Repository by adding a
repository interface. This will add a layer of abstraction between our two components. For more
information on Interfaces, please see “IEnumerable, ISaveable, IDontGetlt: Understanding .NET
Interfaces” (available here: http://www.jeremybytes.com/Demos.aspx#INT).

The DI.Common project contains the IPersonRepository interface. This interface was extracted
from PersonServiceRepository . With this abstraction, we can implement any number of concrete

repositories.
public interface IPersonRepository
{ I[Enumerable <Person > GetPeople();
Person GetPerson(string lastName);
void AddPerson(Person newPerson);
void UpdatePerson(string lastName, Person updatedPerson);

void DeletePerson(string lastName);

void UpdatePeop le(|IEnumerable <Person > updatedPeople);

}
Our first concrete repository is the one we already have: PersonServiceRepository

public class PersonServiceRepository . IPersonRepository

Now that we have an interface, we can create additional repository classes that implement the same
interface. The PersonCSVRepository s just such a class. You can check the class in the
Dl.Repository.CSV project for the implementation details.

A side note about the Repository interface: IPersonRepository will only work for the Person class.
If we had another object type (such as Product), we would need to create a separate interface.
As an alternative, we could use an interface with generic parameters to create an interface that
can be used across types. IRepository<T, TKey> is just such an interface and has been included
for reference. For more information on Generics, see “T, Earl Grey, Hot: Generics in .NET” (at
http://www.jeremybytes.com/Demos.aspx). For this example, we are using IPersonRepository

for simplicity.

Constructor Injection
Now that we have our abstraction, the only thing left is to add it as an injected dependency to our View
Model. As a reminder, here’s what our MainWindowViewModel.cs looked like before:

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 12

http://www.jeremybytes.com/Demos.aspx#INT
http://www.jeremybytes.com/Demos.aspx

public class MainWindowViewModel : [NotifyPropertyChanged

{ protected PersonServiceRepository Repository;
public MainWindowViewModel()
{ Repository = new PersonServiceRepository 0;
} ...other members removed

Rather than having the constructor “new” up a concrete type, we’ll pass an instance in to the class as a
constructor parameter:

public class MainWindowViewModel : INotifyPropertyChanged

{ protected IPersonRepository Repository;
public MainWindowViewModel(IPersonRepository repository)
i Repository = repository

...other members removed

}

First, notice that we have changed our Repository variable type from PersonServiceRepository

to IPersonRepository — we are using an abstraction (the interface) rather than a concrete type. This
allows the Repository variable to accept any class that implements the IPerson Repository

interface (including Per sonServiceRepository , PersonCSVRepository , plus any other new
repositories we may create in the future). This makes our code extensible while remaining unchanged.
This is referred to as the Open-Closed Principle (the O in the S.O.L.I.D. principles) — the code is open for
extension but closed for modification.

These changes also help us adhere to the Dependency Inversion Principle (the D in S.0.L.1.D.) —
abstractions should not depend upon details; details should depend upon abstractions. In our code,
instead of depending on a concrete type, we have shifted our dependency to an abstraction (our
IPersonRepository interface).

But how do we get the concrete type that implements the interface? We make it “somebody else’s
problem”. We've already determined that the View Model doesn’t need to know anything about the
implementation details of the repository. All it cares about is that the repository implements
IPersonRepository . So, if the View Model should not be responsible for the specific repository, who
should be? We’'ll find this out in a bit.

To get the repository into our class, we have added a constructor parameter that uses our interface.
This method is known as Constructor Injection. This is a preferred method for injecting dependencies
into a class. The primary advantage is that we know exactly what dependencies need to be fulfilled
simply by looking at the constructor.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 13

Removing Dependencies
Since we have removed the dependency on a concrete repository (PersonServiceRepository), we
can also remove the references to that assembly.

First, we can remove the using statement:
. DLF itory-Service:
Next, we can remove the assembly reference. Just find the DI.Repository.Service assembly in the

References, right-click it, and select “Remove”. Now our View Model is completely isolated from any
concrete repository. It only cares about the abstraction —the IPersonRepository interface.

Now, that’s loose coupling!

Injecting the View Model into the View

So far, so good. We’ve managed to de-couple our View Model from a specific implementation of the
Repository. But now we have another problem. Our code won’t build. Since we removed the default
(no parameter) constructor from the View Model, our View won’t compile. As a reminder, here is our
MainWindow.xaml.cs code (from the DI.Ul project):

public partial class MainWindow : Window
{
public MainWindow()
{
InitializeComponent();
ViewModel = new MainWindowViewModel ();
}
public MainWindowViewModel ViewModel
{
get { return (MainWindowViewModel) this .DataContext; }
set
L
this .DataContext = value ;
}
}

}
We get an error on the following line:
ViewModel = new MainWindowViewModel ();

Now, we could add the required parameter to the MainWindowViewModel constructor. This would
mean creating an instance of the Repository we want to use, but this really wouldn’t accomplish our
goals. We've already said that the View Model should not be responsible for the repository. If the View
Model should not be responsible, then the View definitely should not be responsible for it.

Instead, we’ll use Constructor Injection on the View as well (to inject the View Model). This will make it
“somebody else’s problem”. Here’s our updated View code:

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 14

public partial class MainWindow : Window

{
public ~ MainWindow(MainWindowViewModel viewModel)
{
InitializeComponent();
ViewModel = viewModel ;
}
public MainWindowViewModel ViewModel
{
get { return (MainWindowViewModel) this .DataContext;}
set
{
this .DataContext = value ;
}
}
}

This is great; we’re now injecting the View Model dependency into our View, so the View is no longer
responsible for creating the instance. We could take this a step further and extract an interface from
our View Model, but we won’t do that here. In a larger system where View and View Models tend to be
more mix-and-match, this would be an excellent idea. But we’ll just stick with the concrete type in our
sample.

Composing the Dependency Graph

So, this hasn’t really solved our problem, either. When we build, our application builds successfully. But
if we run, we immediately get a run-time error. And the error is non-helpful: “Object not set to instance
of an object.”

When a WPF application starts, it looks for the StartupUri (in the App.xaml file). This points to the
XAML that will be used as the application’s main window. The issue is that WPF expects that this startup
object has a default (no parameter) constructor. Since we removed our default constructor from
MainWindow.xaml.cs , we need to create the window a bit differently. Here’'s what we'll do —in the
App.xaml file, remove the following attribute from the opening Application tag:

Now, we’ll add a bit of code to App.xaml.cs

public partial class App : Application

{
protected override void OnStartup(StartupEventArgs e)
{
base .OnStartup(e);
Application .Current.MainWindow = new MainWindow ();
Application .Current.MainWindow.Show();
}
}

This is the equivalent of using the StartupUri. The OnStartup event fires as the application is starting.
What we need to do is instantiate the MainWindow and then show it. And that’s what we’re doing.

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 15

In the second line of the method, we are “new”ing up our MainWindow class (from MainWindow.xaml)
and then assigning it to the MainWindow property of our Application . Once the MainWindow
property is set, we can Showit. This displays that form, and since it is the MainWindow , when that form

is closed, the application will shut down.

One thing about this code snippet: even though it is an equivalent replacement for the StartupUri
that we had before, it still won’t build. That’s because it is still trying to call the MainWindow
constructor without any parameters. So, let’s fix that.

Our MainWindow constructor needs a MainWindowViewModel as a parameter. Let’s create one of

those and pass it to the constructor:

protected override void OnStartup(StartupEventArgs e)

{

}

base .OnStartup(e);

var viewModel = new MainWindowViewModel ();

Application .Current.MainWindow = new MainWindow (viewModel);
Application .Current.MainWindow.Show();

This is bit better, but it still won’t build. Our MainWindowViewModel constructor needs an
IPersonRepository parameter. Let’s add that:

protected override void OnStartup(StartupEventArgs e)

{

}

base .OnStartup(e);

var repository = new PersonServiceRepository 0;
var viewModel = new MainWindowViewModel (repository);
Application .Current.MainWindow = new MainWindow (viewModel);

Application .Current.MainWindow.Show();

Now our application will build successfully. But let’s refactor this just a bit before we go. The code that
we just added is where we are composing our objects — we’re snapping our loosely-coupled pieces
together. So, we’ll put those into a method to make that more apparent:

protected override void OnStartup(StartupEventArgs e)

{

}

base .OnStartup(e);
ComposeObjects();
Application .Current.MainWindow.Show();

private static void ComposeObjects()

{

var repository = new PersonServiceRepository 0;
var viewModel = new MainWindowViewModel (repository);
Application .Current.MainWindow = new MainWindow (viewModel);

Dependency Injection: A Practical Introduction presented by JeremyBytes.com
©Jeremy Clark 2013 Page 16

This gives us what is referred to as a Composition Root. This is the location where we will wire up all of
the dependencies for our object graph.

If we run the application, we will see the same results that we had earlier. But here’s the difference:
we’ve removed the tight-coupling from our code. The View Model is no longer tightly-coupled to the
PersonServiceRepository . And because we broke this coupling, our View is no longer tightly-

coupled to the Service.

In fact, we can easily swap out the repository by changing one line of code in our ComposeObiject
method:

var repository = new PersonCSVRepository ();

Our old code would have required that we make changes to the View Model in order to use a different
Repository. But since we’ve broken the coupling (and used DI to inject the Repository), the View Model
no longer cares about the concrete type it is using as long as that type implements the appropriate
interface (IPersonRepository). So, no matter how many new repositories we add, we will never

have to update our View Model (whoo hoo!).

If we make these changes for the CSV repository and run the application, we get a slightly different
result:

W Dependency Injectiol

Refresh People

Clear Data

X

John Koenig
1975
6/10 Stars

John Crichton
1999
7/10 Stars

John Sheridan
1994
6/10 Stars

Isaac Gampu
1977
4/10 Stars

Dylan Hunt
2000
8/10 Stars

Dave Lister
1988
9/10 Stars

Dante Montana
2000
5/10 Stars

Jeremy Awesome
1971
10/10 Stars

There is an additional Person (Jeremy Awesome) in the CSV file. This is so that it is easy to tell if we are

using the Service repository or the CSV repository.

Let’s go ahead and swap back to the PersonServiceRepository

example.

before continuing to the next

Dependency Injection: A Practical Introduction presented by JeremyBytes.com

©Jeremy Clark 2013

Caching Repository

Above, we talked about adding a caching repository — this would keep a client-side copy of the data so
that we don’t have to make a server call each time we ask for data. Another requirement is that the
caching repository needs to work with whatever concrete repository we want — whether the
PersonServiceRepository , PersonCSVRepository , or some other repository. This makes it an
ideal candidate for using a Decorator Pattern with Dependency Injection.

The Decorator Pattern

The Decorator Pattern is a very simple idea. It describes a way for us to wrap an existing type, add some
functionality, and expose the same interface as the original type. This makes it a drop-in replacement
for the existing type.

As an aside, this could be seen as adhering to the Liskov Substitution Principle (the L in S.0.L.1.D.)
— subtypes must be substitutable for their base types. Technically, we are using object
composition and interfaces rather than direct inheritance, but the 100%-compatible object
replacement fits the general principle.

Let’s see how this works. Our solution contains a CachingServiceRepository class (in
Dl.Caching.Repository):

public class CachingPersonRepository . IPersonRepository

{
private TimeSpan _cacheDuration = new TimeSpan (0, 0, 30);
private DateTime _dataDateTime;
private IPer