[Enumerable, [Saveable, IDontGetlIt:
Interfaces in .NET

An overview of interfaces and abstraction by JeremyBytes.com

Overview

Interfacesin .NET allow us to program at an appropriate level of abstraction. They allow us to create
and use functionalityinan objectevenif we do not know the object’s concrete class type. With
appropriate use of interfaces, we can build code thatis extensibleand loosely coupled.

First, we’ll take alook at some definitions —whatinterfaces are and how they compare to abstract
classes (and concrete classes). Thenwe’ll take aquick look at an advantage to programmingto an
interface ratherthanto a concrete type (inthis case, IEnumerable). Next, we’llcreate our owninterface
(an objectrepository)and create an extensible and testable application. Finally, we’llremove compile-
time constraints by dynamically loading an implementation of our interface. So, let’s get started!

What is an Interface?

The firstthingwe needto do isdefine whataninterfaceis. Usually, whenwe hear “interface” we think
aboutuser interfaces—the controls and designthatthe userseesonthe screen. But the interfaceswe
are lookingathere are in the code — allowing us to specify functionality thatis supported by aclass.

From the Visual Studio documentation: “Interfaces describe a group of related functions that can belong
to any class or struct.”

The easiest way to think of an interface isasa contract. Whena class implements aninterface, itis
committingtoimplementing a specificset of functions thatthe programmercanrelyon. Let’stake a
look at some samplesto help us understand this better.

A Simple Sample

We'll start with a completed console application that contains samples of a concrete class, an abstract
class,and an interface. You can download the source code forthe application here:
http://www.jeremybytes.com/Downloads.aspx. The sample code we’llbe looking atis builtusing .NET 4
and Visual Studio 2010 (however, everything will work with .NET 3.5 and Visual Studio 2008). The
download includes several different solutions (some of which share projects). Each solutionexistsasa

starterapplication (if you wantto follow along) and the completed code.

We'll start by takinga lookat the SimpleSample.sln solution.

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 1

http://www.jeremybytes.com/Downloads.aspx

A Concrete Class
The Polygons project containsseveral different objects. We'llstart by look at the
ConcreteRegularPolygon class.

public class ConcreteRegularPolygon

{
public int NumSides { get; set; }
public int SideLength { get; set; }

public virtual double GetArea ()
{
throw new NotImplementedException();

}

public double GetPerimeter ()
{
return SidelLength * NumSides;

}

public ConcreteRegularPolygon (int numSides, int sideLength)
{

NumSides = numSides;

SideLength = sidelLength;

}

Thisis a standard class that contains 2 properties, 2methods, and a constructor. Thisis a simple object
that represents apolygonthat has the same length foreach side and contains as many sides as we like.
One thingto notice isthat we are usingautomaticproperties (for NumSides and SideLength). The
syntax that we see above is shorthand for a fullyimplemented property such as this:

private int numSides;

public int NumSides

{
get { return numSides; }
set { numSides = value; }

}

In thissample, we have a private field (_numSides) that holds the actual value. The getterand setter of
the property (NumSides) interacts with the field.

Note: We may wantto use the full property syntax if we need to add additionallogic to the get
or set (such as data validation or change notification). If we don’t need to add code, then we can
use the automatic property syntax to make our code a bit more compact.

The GetPerimeter method of our class simply multiplies the length of each side by the total number of
sides; thisgives usthe distance around the polygon. Notice thatthe GetArea method throwsa
NotImplementedException. Thisisbecause the calculation forthe areaof a polygon dependsonthe
number of sides; each shape has a differentformula. We’ve made this method virtual and expect
that a descendentclass willoverride this method to provide a useful implementation. We'll seea
sample of thisinusein justa bit.

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 2

An Abstract Class

An abstractclass is a class that has one or more elements marked as abstract (nice use of recursion,
huh?). Anabstract method or propertyis justdeclaredin the class; it is not actually implemented.
Because of this, an abstract class cannot be instantiated. You must create a descendent class that
implements the abstract members beforean object can be instantiated in the code.

Hereis the AbstractRegularPolygon from the sample project:

public abstract class AbstractRegularPolygon
{

public int NumSides { get; set; }

public int SidelLength { get; set; }

public abstract double GetAreal();

public double GetPerimeter ()
{

return SideLength * NumSides;

}

public AbstractRegularPolygon (int numSides, int sideLength)
{

NumSides = numSides;
SideLength = sidelLength;

}

Like our concrete class, this class contains 2 properties, 2 methods, and a constructor. But therearea
couple of differences. First, the classitselfismarkedas abstract. Next,the GetArea methodisalso
marked as abstract and does not contain an implementation. Because of this, we cannotinstantiate
the AbstractRegularPolygon class. We will needtocreate a descendent class thatimplements this
method. We'll see thisinjustabit.

A purely abstractclassis a class that does not have any implementation code atall, only declarations.
You don’t meet purely abstract classesin the real world; an interface is usually a better choice.

An Interface
Aninterfaceissimilartoa purely abstract class, in thatit contains only declarationsand no
implementation code. Butthere are some key items that differentiate abstract classes and interfaces.

The sample project contains an IRegularPolygon interface.

public interface IRegularPolygon
{
int NumSides { get; set; }
int SideLength { get; set; }

double GetAreal() ;
double GetPerimeter();

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 3

The interface contains 2 properties and 2 methods. Here are a few things to note. First, we use the
interface keyword (instead of class orstruct). Next, there are no access modifiers onthe properties
or methods. Forinterfaces, all membersare public. This makessense;since aninterface isacontract
betweenaclassand a programmer, the members of that contract must be visible to both parties.
Finally, thereis no constructor.

Important note: we have a bit of unfortunate syntax here. If youlook atthe properties of the
interface, they look very similar to the automatic properties that we havein the classes. But they
aren’t. The propertiesin an interface are only declarations, notimplementations. So, although
these look like automatic properties, they are really just a placeholder. The properties must be
implemented in the class in orderto fulfill the contract (as we’ll see in justa bit).

Class Implementation
Now that we’ve seen the base classes and the interface, let’s take alook at usingthese items. The
implementationisinthe Polygons.ConsoleApp project.

Concrete Class Implementation
First,the ConcreteSquare descendsfromthe concrete class:

class ConcreteSquare : ConcreteRegularPolygon
{
public ConcreteSquare (int sideLength)
base (4, sidelLength) { }

public override double GetArea()

{
return SidelLength * SidelLength;

}
}

The implementationis pretty straight-forward. This class descendsfrom ConcreteRegularPolygon.
The constructor simply calls the base class constructor, and thereisan override ofthe GetArea

methodtoimplementthe code. The rest of the implementation comes from the base class. No
surprises here.

It isimportantto note that thereis no requirementthatwe implementthe GetArea method;if we
wanted, we could remove this method and rely on the base class implementation (which throws the
exception). Ifwe remove the GetArea method, our code will still compile.

AbstractClass Implementation
Next, the AbstractTriangle descendsfromthe abstractclass. This implementationissimilartothe
previous class:

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 4

public class AbstractTriangle : AbstractRegularPolygon
{
public AbstractTriangle (int sideLength)
base (3, sideLength) { }

public override double GetArea ()
{
return SideLength * SidelLength * Math.Sqrt(3) / 4;
}
}

The class descends from AbstractRegularPolygon. The constructor callsthe base class constructor,

and thereisan override of the GetArea method. The rest of the implementation (the properties and
GetPerimeter) comesfromthe base class.

The difference hereisthatwe mustimplement the GetArea method. If we do not implement this
method, the compilerwill throw an error.

Interface Implementation
Finally, the InterfaceOctagonimplementsthe interface:

public class InterfaceOctagon : IRegularPolygon
{
public InterfaceOctagon (int sideLength)
{
NumSides = 8;

SideLength sideLength;

public int NumSides { get; set; }
public int SidelLength { get; set; }

public double GetArea()
{

return SidelLength * Sidelength * (2 + 2 * Math.Sqrt(2)):;
}

public double GetPerimeter ()
{

return SideLength * NumSides;
}
}

First, | wantto note the terminology. InterfaceOctagonimplementsthe IRegularpPolygon

interface;itdoes not descend from the interface. Since the base classis not specified, the class implicitly
descendsfromobject.

When we look at the code, we see a fullyimplemented constructor (because there is no base
constructor). We also see implementations for both of the properties and for both of the methods.

Noteagain the unfortunate syntax. Eventhough the properties look just like the ones in the
interface, these are actually automatic properties (like we saw in our concrete class, above). This

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 5

qualifies them as an implementation of those properties, and as such, fulfills the interface
contract.

If we do not provide implementations forall 4members, then we will getacompilererror. Again, think
of the interface as a contract between the class and the programmer — by implementing aninterface,
the class commits to having each of those members. Abitlater, we’ll take alook at some shortcuts that
Visual Studio provides to make implementing interfaces easier.

What's the Difference?
So here’sthe big question: what’s the difference between a purely abstract class and an interface? On
the surface, they seemto both behave the same. However, there are key differences:

Abstract Classes Interfaces

My containimplementation code (non-abstract May not contain any implementation code.
members). Interfaces are limited to declarations only.

A class may only descend fromasingle base class A class may implement multipleinterfaces.
(single inheritance).

Members contain access modifiers (public, private, Members do not contain access modifiers. All

protected, etc.). members are automatically public.

May contain fields, properties, constructors, May contain properties, methods, events, and

destructors, methods, events, and indexers. indexers. May not containfields, constructors, or
destructors.

C# allows forsingle-inheritance only; meaning, that a class can descend from one (and only one) base
class. Thereis no way for a classto descend from 2 different parent classes. Some people have cited
this as a shortcomingin C# languages (afterall, C++allows for multiple-inheritance). Butin practical
usage, multiple-inheritance can lead to unanticipated issues (but that’s atopic foranotherdiscussion).

The solutionisinterfaces. Aclasscan descend fromonly a single base class, butitcan implementas
many interfaces asit needs. If we take a look at some of the classesinthe .NEThelp system, we will see
many examples of classes thatimplement multipleinterfaces. Asanexample, hereisthe definition for
List<T>:

public class List<T> : IList<T>, ICollection<T>,
IEnumerable<T>, IList, ICollection, IEnumerable

In this case, there isno declared base type (sothe base type is 0Object), but there are several generic
and non-genericinterfaces thatare implemented. This meansthatwhen we use the 1.i st<T> class, we
can dependonithaving IEnumerable functionality. Thiswill be importantto usinour nextexample.

[Enumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 6

Programming to an Abstraction

Amongthe extensive list of best practices, we often hear that we should program to an abstraction
rather than a concrete implementation. Inorderto see whatthis meansand why it’simportant, let’s
take a look at anothersolution: IEnumerableSample.sln.

The Projects

The solution contains 3 projects: the People.Service projectdefinesa WCF service that providesour
data; we will be usingthe Get People method. The PersonRepository.Interface projectwill be
more importantinthe nextsolution; for now, it’s just used because it contains the declaration of the
Person class (the class type of our sample data). We’'ll be spending most of our timeinthe
IEnumerable.UI project.

The IEnumerable.UI projectisasimple WPFapplication. TheMainWindow.xaml containsa list box
that will hold ourdata and 3 buttons — 2 to fetch data and 1 to clearthe list box.

The projectalsocontainsa Converters.cs file that containsa number of value converters thatare
usedinthedisplay. If youare interestedinthe XAMLand value convertersin this project, you can look
up the Introduction to Data Templates and Value Converters in Silverlight demo and sample code on the
website: http://www.jeremybytes.com/Downloads.aspx (note: this works perfectly well in WPF as well).

The code-behind the Mainwindow has stubs for the button event handlers. We will be fillingthesein
shortly.

Note: We are not doing a fully layered / abstracted application here in order to keep the example
simple and allow us to focus on the core parts. In a production application, the recommendation
is to separate the model, application logic, and Ul (such as is common when implementing the
Model-View-ViewModel pattern).

Adding the Service Reference
We'll start by adding a reference tothe WCF Service. Here are the steps:

1. IntheSolutionExplorer, right-clickonthe project IEnumerable.UI, and select “Add Service

Reference”.

2. Inthedialog, clickthe “Discover” button. Thiswill look forany servicesthatare includedinthe
solution. PersonService.svcshould come up.

3. Inthe “Namespace” box, type “MyService”.

4, While we’re onthisscreen, take note of the “Advanced” button. Don’tclickit now; we’ll be
lookingitat lateron.

5. Clickthe “OK” button.

The Concrete Implementation
At the top of the MainWindow.xaml.cs file,add the following using statement:

using IEnumerable.UI.MyService;

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 7

http://www.jeremybytes.com/Downloads.aspx

We’ll startby implementingthe ConcreteFetchButton Click method. Theideabehindthis
method is that we are codingto a concrete class (the class type that is returned by the WCF service).
We'll use this to populate the list box. Here’sthe code:

private void ConcreteFetchButton Click(object sender, RoutedEventArgs e)

{

Person[] people;
var proxy = new PersonServiceClient();
people = proxy.GetPeople();

PersonlListBox.Items.Clear();
foreach (var person in people)
PersonlistBox.Items.Add (person) ;

}

In this case, we create a variable whichisanarray of person. Thisis the type that is returned by the
GetPeople method of the service. Thenwe create aninstance of the service and populate our
variable. Finally, we loop through the items and add themto the listbox. Hereisthe running
application afterclicking the “Concrete Class” button:

o ™
¥ IEnumerable Sample E@Iﬂ

Concrete Class

Interface

Clear Data

X

John Koenig
1975
6/10 Stars

John Crichton
1999
7/10 Stars

John Sheridan
1994
6/10 Stars

| CEETACET T}
1977
4/10 Stars

Dylan Hunt
2000
8/10 Stars

Dave Lister
1988
9/10 Stars

Dante Montana
2000
5/10 Stars

The Abstract Implementation

Now that we’ve seen the concrete implementation, let's take a step back and think about what we really
need here. We have a collection of Person objects, and we are usinga foreach loopto add themto a
listbox. Butitturns out thatthe actual type of the collection doesn’t really matterto us. All we really
care aboutis the abilitytouse foreach. If we checkthe documentation, we find thatin orderto use
foreach, we simply need aclassthat implements IEnumerable or IEnumerable<T>. So, forthe
InterfaceFetchButton Click method, we’ll programtothe abstraction (the interface) ratherthan
the concrete class:

[Enumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com

©Jeremy Clark 2012 Page 8

private void InterfaceFetchButton Click(object sender,

{

IEnumerable<Person> people;

var proxy = new PersonServiceClient();

people = proxy.GetPeople();

PersonlListBox.Items.Clear () ;
foreach (var person in people)
PersonlListBox.Items.Add (person) ;

}

The only difference fromthe previous method is that ourvariable now specifies thatinterface

RoutedEventArgs e)

(IEnumerable<Person>)rather thanthe concrete class (array of Person). If we runthe application,
we get exactly the same results:

-
® IEnumerable Sample Elélg
= —

Concrete Class

Interface

Clear Data

X

John Koenig
1975
6/10 Stars

John Crichton
1999
7/10 Stars

John Sheridan
1994
6/10 Stars

Isaac Gampu
1977
4/10 Stars

Dylan Hunt
2000
8/10 Stars

Dave Lister
1988
9/10 Stars

Dante Montana
2000
5/10 Stars

So What?

Okay, so we’ve created 2 methods that have the same result. Why should we use the interface? Forthe
same reason that we program to abstractions: to protect our code from change. Let’sexperimenta

little with ourapplication.

In the Solution Explorer, expand the Service References node, right-click on MyService, and select
“Configure Service Reference.”

[Enumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com

©Jeremy Clark 2012 Page 9

r -
IEnumberable.ULMyService - Service Reference Sem_ [

Client

Address: http://localhost:1502/PersenService.sve

Access level for generated classes: Public -

[T] Generate asynchronous operations
Data Type

[] Always generate message contracts

Collection type: [system.Armay -

Dictionary collection type: [System.Callections.Generic Dictionary -

Reuse types in referenced assemblies
@ Reuse types in all referenced assemblies

) Reuse types in specified referenced assemblies:

[C]-3Microsoft.CSharp B
[7]- S mscorlib
[C]-3PresentationCore
[C]-PresentationFramework

[C] - System

[[]-35ystem.Core

[C]-=System Data

[7] -3 System.Data.DataSetExtensions.
[7]-3System Runtime.Serialization
[7] -2 System.ServiceModel

[] iz Suctem Xaml

m

Take a look at isthe “Collection Type” drop-down. Right now, we cansee thatitis setto
“System.Array”, with the resultthat the service method returned anarray (Person[]). Thisisthe
defaulttype that we getwhenwe bringin a service using BasicHttpBinding. This default type varies
based on the service type and the programming environment that we are using. But thisdialogallows
us to change this. Let’s update itto “System.Collections.Generic.List”; now our service method will
returna List<Person>. Asa side note, rememberthat “Advanced” button fromthe Add Service
Reference dialog? Thattakes usto thissame screen, sowe can setthese properties when we initially
add the service to our project.

Now we have a problem. If we try to build the application, we get the followingerror:

Cannot implicitly convert type
'System.Collections.Generic.List<IEnumberable.UI.MyService.Person>' to
'IEnumberable.UI.MyService.Person/(]

In orderto getthisapplicationto build, we need to change the variable type in the
ConcreteFetchButton Click methodfrom

Person[] people;
to
List<Person> people;

After making this change, our code will compile and run once more.

But the importantthingto note isthat we do not needtoupdatethe InterfaceFetchButton Click
method. Because we programmed to the abstraction (the IEnumerable interface), we are not affected
by the change of the type comingback fromthe service. Since almostevery collectionin .NET
implementsthe IEnumerable<T> interface, this section of code is robust and resistantto breakingin

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 10

response to thistype of change. Granted, thisis a very simple example, and there are other ways to
resolve the issue inthis scenario (such as with the use of var), but this gives us a good jumping-off point
to look at some more realisticexamples.

Using Interfaces in the Real World

Now that we’ve seen the usefulness of programmingto an abstraction, let’s take this further. Inthis
case, we’ll decouple ourcode by using the Repository pattern. The Repository pattern willallow usto
separate the core of our application from the data storage mechanism.

Note: We are not doing a fully layered / abstracted application here in order to keep the example
simple and allow us to focus on the core parts. In a production application, the recommendation
is to separate the model, application logic, and Ul (such as is common when implementing the
Model-View-ViewModel pattern).

In our previous example, we retrieved our datafroma WCF service. But what if we wanted to expand
thisso that we couldretrieve the datafroma SQL Serveror a CSV file (orany otherdata store that we
can think of)? If we splitthings outa bit, we can make our application more extensible.

So let’stake alook at the RepositoryInterface.sln solution.

The Projects

The initial solution contains 3 projects: the People.Service projectisthe same as fromthe previous
example and contains anumber of methodsina WCF service forusto use. The PersonApp.UI project
isa WPF application thatisverysimilartothe last application; it contains a list box with 3 buttons— one
for each of the data storage types we wantto use. The PersonRepository.Interface project
containsthe declaration of the Person class and also the repository interface that we are interested in.
Thisis where we will start.

IPersonRepository
The IPersonRepository.cs file containsthe declaration for ourrepository interface. This contains
the methods that we may want to use to fetch and save data:

public interface IPersonRepository
{
IEnumerable<Person> GetPeople () ;
Person GetPerson(string lastName) ;
void AddPerson (Person newPerson) ;
void UpdatePerson(string lastName, Person updatedPerson);

void DeletePerson(string lastName) ;

void UpdatePeople (IEnumerable<Person> updatedPeople);

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 11

These methods should be pretty self-explanatory. Oursampleswill be concentratingon Getpeople
(whichreturnsthe entire list of Person objects) and Get Person (which returns a single Person object
based on lastname).

As we noted earlier, aninterface contains only declarations with noimplementation. This particular
interface only has methods, but properties, events, and indexers could be added if we needed them.

Further Exploration: This is an example of the Repository Pattern. This repository interface is
tuned for a specific object type (Person). To make this more flexible, we could update our
repository to use generics (IRepository<T>)and reflect this in the names/types of the
methods.

The WCF Service Repository

Now that we have an interface defined, we need to create a concrete class that implements this
interface. We’'ll start with animplementation that uses the WCF Service. Todo this, we’ll create anew
projectinthe solution:

In the Solution Explorer, right-click on the solution and select “Add”, then “New Project”.
Select “Class Library” as the template.

Name the project “PersonRepository.Service”.

Right-click on the project, and select “Add Reference”.

On the “Projects” tab, select “PersonRepository.Interface”.

Right-click on the project, and select “Add Service Reference”.

Follow the instructions from the previous sample to add the reference to the PersonService.
Rename the “Classl.cs” file to “ServiceRepository.cs”. When prompted, select torename the

©® N O U wWwN e

classas well.

Now that we have the basics set up, we can start modifying our code. Addthe followingto the top of
the SserviceRepository.cs file:

using PersonRepository.Interface;
using PersonRepository.Service.MyService;

Addtheinterface tothe class declaration:

public class ServiceRepository : IPersonRepository

{
}

If we try to build the application now, we willget errors because our class says that it implements
IPersonRepository, butitdoesn’tactuallyimplementany of the members. We could add the
methods one ata time or copy them from the interface definition, but Visual Studio gives us a much
easierway.

If click somewhereinthe word “IPersonRepository” (to put the cursorthere), you will see the first letter
isunderlined with asmall blue box. This box s a clue that Visual Studio wantsto help us out. If we

[Enumerable, [Saveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 12

pressthe Ctrl keyand “.”, we get a pop-up menu. One of theitemsis “Implementinterface
‘IPersonRepository”’. If we press enter, then Visual Studio stubs out all of the interface members for us.
Note: we can getthe same options by right-clicking on “IPersonRepository”. Thereis alsoanoptionto
explicitlyimplementthe interface. Thisisamore advancedtopicthatis outside the scope of this
document.

public class ServiceRepository : IPersonRepository

{
public IEnumerable<Person> GetPeople ()

{

throw new NotImplementedException();

}

public Person GetPerson(string lastName)

{

throw new NotImplementedException () ;

}

public void AddPerson (Person newPerson)

{

throw new NotImplementedException();

}

public void UpdatePerson(string lastName, Person updatedPerson)

{

throw new NotImplementedException();

}

public void DeletePerson(string lastName)

{

throw new NotImplementedException();

}

public void UpdatePeople (IEnumerable<Person> updatedPeople)
{

throw new NotImplementedException();

}

This makes it extremely easy for us to make sure that we are implementing all of the required members
of theinterface. With thatin mind we just need to replace the exceptions with our custom code. Inthis
case, we are connectingto the WCF PersonService thatimplements these same methods. We’lladd a
constructorthat creates the service proxy and then pass through all of the method calls to the service.
Here’s the completed code:

public class ServiceRepository : IPersonRepository

{

private PersonServiceClient proxy;

public ServiceRepository()
{

proxy = new PersonServiceClient();

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 13

}

public IEnumerable<Person> GetPeople ()
{

return proxy.GetPeople();

}

public Person GetPerson(string lastName)

{

return proxy.GetPerson (lastName) ;

}

public void AddPerson (Person newPerson)

{

proxy.AddPerson (newPerson) ;

}

public void UpdatePerson(string lastName, Person updatedPerson)

{

proxy.UpdatePerson (lastName, updatedPerson) ;

}

public void DeletePerson(string lastName)

{

proxy.DeletePerson (lastName) ;

}

public void UpdatePeople (IEnumerable<Person> updatedPeople)

{
proxy.UpdatePeople (updatedPeople.ToArray()) ;
}

Now we should be able to successfully build oursolution. The next step will be to add our new class to

the Ul project. Let’sdothe followinginthe PersonApp.UI project.

A w N

In the Solution Explorer, right-click on “PersonApp.Ul” and select “Add Reference”.

On the “Projects” tab, select “PersonRepositoy.Service”.

Right-click on “PersonApp.Ul” and select “Add Service Reference”.

Follow the instructions from the previous sample toadd the reference tothe PersonService.

Addthe followingtothe top of the MainWindow.xaml.cs file:

using PersonRepository.Service;

Now we can implementthe ServiceFetchButton Clickmethod:

private void ServiceFetchButton Click(object sender, RoutedEventArgs e)

{

IPersonRepository repository = new ServiceRepository();

PersonlListBox.Items.Clear () ;

var people = repository.GetPeople();

foreach (var person in people)
PersonlistBox.Items.Add (person);

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 14

MessageBox.Show (string.Format ("Repository Type:\n{0}",
repository.GetType () .ToString()))
}

Notice that we create a variable with the type IPersonRepository. Thismeansthat we can assign
any objectthatimplements thatinterface —inthis case, the concrete type is ServiceRepository.
The last statement (the message box) will show us the name of the concrete type. Thiswill help ussee
some differences once we implement some more repository classes.

With thisin place, we can run the application. Hereisthe resultif we clickthe Service Repository
button:

r B

Service Repository

CSV Repository

S,

SQL Repository

John Koenig

1975
6/10 Stars

John Crichton
1999
7/10 Stars

John Sheridan
1994
6/10 Stars

Dylan Hunt
2000
8/10 Stars

Dave Lister
1988
9/10 Stars

Dante Montana
2000
5/10 Stars

S,

X

| CEETACET T}

1977
4/10 Stars

Clear Data

The CSV and SQL Repositories
Now that we have one repository implemented, we can take a look at the othertwo. The good thingis
that these repository classes are already implemented; we just need to add themto the solution.

1. IntheSolutionExplorer, right-click onthe “Repositorylnterface” solution, select “Add”, then
“Existing Project”.

Locate “PersonRepository.CSV.csproj” and add it to the solution.

Repeatthe above steps toadd the “PersonRepository.SQL.csproj” project.

Right-click onthe “PersonApp.Ul” projectand select “Add Reference”.

On the “Projects” tab, select “PersonRepository.CSV” and “PersonRepository.SQL”.

AN

Addthe followingat the top of the MainWindow.xaml.cs file:

using PersonRepository.CSV;
using PersonRepository.SQL;

[Enumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com

©Jeremy Clark 2012 Page 15

Addthe following code forthe csvFetchButton Click method:

private void CSVFetchButton Click(object sender, RoutedEventArgs e)
{

IPersonRepository repository = new CSVRepository():;

PersonlListBox.Items.Clear():;

var people = repository.GetPeople();

foreach (var person in people)
PersonlListBox.Items.Add (person) ;

MessageBox.Show (string.Format ("Repository Type:\n{0}",
repository.GetType () .ToString()))
}

And add the following code for the SQLFetchButton Click method:

private void SQLFetchButton Click(object sender, RoutedEventArgs e)
{

IPersonRepository repository = new SQLRepository();

PersonlListBox.Items.Clear () ;

var people = repository.GetPeople();

foreach (var person in people)
PersonListBox.Items.Add (person);

MessageBox.Show (string.Format ("Repository Type:\n{0}",
repository.GetType () .ToString()));
}

Notice thatthese methods are exactly the same as the method forour ServiceRepository. Theonly
differenceisthe class that we “new” up in the firstline. (This should also be a clue to us that we should
considerrefactoring this code; we’lldo thisinjusta bit.)

The reason that we can use these classes sointerchangeablyisthattheyall implementthe same
interface. If we openupthe CSVRepository classfile andthe sQLrRepository class file, we will see
that the implementations are wildly different. Butsince ourapplicationis programmingtotheinterface
(IPersonRepository),itisnot concernedaboutthese differences. The application only cares about
the contract; because of the interface, the applicationis assured that each of these classes has a
GetPeople methodthat can be called.

Now if we run the application, we should see the same results regardless of the button that s clicked.
We can clickthe “Clear Data” buttonin between justto make sure that the list box is getting populated
as expected. The MessageBox dialog that pops up shows the type of the repository that was used. This
lets us verify that we are, in fact, getting results fromthree different repository types.

Refactoring
As mentioned above, we have adangersignin our application: duplicated code. Let’s start by creatinga
factory for our repository. With the Factory Method pattern, we pass the responsibility forinstantiating

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 16

a particulartype to another method. Inthiscase, we’ll create astatic method that will create the proper
repository class based on a parameter. We’ll start by addinga new class:

1. IntheSolution Explorer, right-click onthe PersonApp.Ul project, select “Add”, then “Class”.
2. Namethe file “RepositoryFactory.cs”.
3. Addthefollowingusing statements:

using PersonRepository.Interface;
using PersonRepository.Service;
using PersonRepository.CSV;

using PersonRepository.SQL;

Modify the class as follows:

public static class RepositoryFactory
{
public static IPersonRepository GetRepository(string repositoryType)

{

IPersonRepository rep;

switch (repositoryType)

{

case "Service": rep = new ServiceRepository();
break;

case "CSV": rep = new CSVRepository();
break;

case "SQL": rep
break;

default:
throw new ArgumentException("Invalid Repository Type");

new SQLRepository();

}

return rep;

Backin MainPage.xaml.cs we’lladda new method called “FetchData” to hold our common code:

private void FetchData(string repositoryType)
{
IPersonRepository repository =
RepositoryFactory.GetRepository (repositoryType) ;

PersonlListBox.Items.Clear () ;

var people = repository.GetPeoplel();

foreach (var person in people)
PersonListBox.Items.Add (person) ;

MessageBox.Show (string.Format ("Repository Type:\n{0}",
repository.GetType () .ToString()))

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 17

Now our button click methods become very simple:

private void ServiceFetchButton Click(object sender, RoutedEventArgs e)

{

FetchData ("Service") ;

}

private void CSVFetchButton Click(object sender, RoutedEventArgs e)

{
FetchDhata ("CSV") ;

}

private void SQLFetchButton Click(object sender, RoutedEventArgs e)

{
FetchData ("SQL") ;

}

So, what we have now is a shared function (FetchbData)whichisreferencingthe IPersonRepository
interface. Somethingimportantto note about this methodisthat it does not know anything about the
concrete classes. Allthis method caresaboutisthat the GetPeople methodisimplemented by the
class, and that isguaranteed by the interface. The FetchData method makesacall outto the
RepositoryFactory in orderto get aninstance of the repository. Againthelocal method doesn’t
care aboutthe concrete type, only thatitimplements IPersonRepository.

You can see that our code looks very clean and that we could add additional repository types with very
little effort. There are still afew shortcomings, but we’llgetalittle closer with the next example.

Late Binding - Making Decisions at Runtime

One problemwith ourcurrentapplicationisthatitis statically linked. Ourmain project (PersonApp.Ul)
needsto have referencesto each of the repository classes that we want to use. This meansthat if we
add a new repository, we need to recompile the application. We wantto try to decouple thissothatwe
can create and deploy new repositories without modifying the application.

To do this, we’ll implement alow-budget version of the Inversion of Control (loC) pattern. There’ssome
confusion between Inversion of Control and Dependency Injection (or Dependency Inversion). In order
to keep things simple, we’ll just use the Wikipedia definition of Inversion of Control:

In software engineering, Inversion of Control (loC) is an object-oriented programming practice
where the object couplingis bound at run time by an assemblerobject andis typically not
known at compile time using staticanalysis.

Based on this definition, hereare the basics of the 1oC container that we will implement:

1. Theapplication code only referencesthe interface, neverthe concrete type.
2. Whenthe application needs aninstance of aclass thatimplements the interface, it calls out to
the loC containerand asksfor it.

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 18

3. TheloC containerthendecides whatclass needstobe instantiated (through configuration or
discovery) and thenreturnsthe class. Thisclasstypeis notknown at compile time;itis
determined at runtime.

4. The application makes use of the instantiated class.

Note: Most fully-implemented loC containers also contain some sort of lifetime management of the
objects so thatthey are not constantly created and destroyed. Forourexample, we are not
implementing this functionality.

We’'re going to update our RepositoryFactory so thatitacts as our low-budgetloC container. It won’t
have much functionality, butit will getthe job done. The factory will lookin the configuration filefor
the type and assembly to use. It will then create an instance of thattype and returnit to the
application.

Let’s start by openingupthe DynamicLoadRepositoy.sln.

The Projects

This solution contains 3projects:the PersonRepository.Interface projectistheinterfacethatwe
have been dealingwith. The PersonApp.DynamicRepository.UI projectcontainsour Ul andthe
factory. The Ul is similarto previous samples except thatit only contains 1 fetch button. The
People.Service projecthas the WCF service. One importantthingtonote is that the Ul projectdoes
notcontaina service reference. The onlyreasonthe serviceisincludedinthe solutionissothatit will
start up automatically when we run the application through Visual Studio.

Inversion of Control in Action
Let’s start by lookingatthe MainWindow.xaml.cs file. Thiswill look very similartowhere we leftthe
last project:

private void FetchButton Click(object sender, RoutedEventArgs e)
{

IPersonRepository repository = RepositoryFactory.GetRepository();

PersonlListBox.Items.Clear();

var people = repository.GetPeople();

foreach (var person in people)
PersonListBox.Items.Add (person);

MessageBox.Show (string.Format ("Repository Type:\n{0}",
repository.GetType () .ToString()));
}

Inthe RepositoryFactory.cs file, we see thatthe factory method has not yetbeenimplemented.
Let’s take a look at the implementation and then walk through the code:

IEnumerable, ISaveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 19

public static IPersonRepository GetRepository()
{
string typeName = ConfigurationManager.AppSettings["RepositoryType"];
Type t = Type.GetType (typeName) ;
object obj = Activator.Createlnstance(t);
IPersonRepository rep = obj as IPersonRepository;
return rep;

}

This code is a bit more advanced, sodon’tworry if you don’tunderstand all of itright away. The first
stepisto get the fully-qualified type name from configuration (app.config). Asa sample, the
CSVRepository looks like this:

<add key="RepositoryType" value="PersonRepository.CSV.CSVRepository,
PersonRepository.CSV, Version=1.0.0.0, Culture=neutral"/>

After getting the fully qualified type name, we use itto generate a Type object. Now that we have a
Type object, we can use the Activator classto instantiate anew object. The objectgenerated by
CreatelInstance ultimately dependsonthe app.config. Based onthe sample configuration,
CreateInstance will returna CSVRepositoryinstance. Notice here that we justassignittoa variable
of type object. The nextstepisto cast thisto IPersonRepository since thatisthe return type
required by the method. The “as” statementattemptsto cast the objectto IPersonRepository;ifit
isnot successful, thenitsimply returns null. The laststep returnsour IPersonRepository to the
callingmethod.

Thisis a standard way of dynamically instantiatingan object based on a type name. We could shorten
this code a bit (by combining some of the calls and casting), but that makesita bit more difficultto
understandif you haven’t worked with this type of code before.

There are a couple of otherrequirementsin orderforthis code to work as expected. First, since the
CSVRepository requiresthe pathtothe “People.txt” file, we have an entry forthat inthe configuration:

<add key="CSVFilePath" wvalue="C:\Users\Jeremy\Documents\Visual Studio
2010\Projects\Interfaces\RunThrough\Interfaces\PersonApp.DynamicRepository.UI
\People.txt"/>

The only otherrequirementisthatthe “PersonRepository.CSV” assembly be place d where the
application canfindit. In thissample, we have a copy of “PersonRepository.CSV.dll” in the “bin” folder
of ourapplication; but we could also load the assembly into the GAC(Global Assembly Cache).

The sample project contains configuration file entries forthe WCF service repository and the SQL
repository. By updatingthe app.configfile, we can determine which repository will be used at run time.
The commentsinthe configuration file will show you how to use the otherrepositories. Nothingis
statically hooked togetherat compile time. Instead, itis decoupled and dynamically loaded at run time.

This meansthat if we needto deploy anotherrepository type, we just need to build the class library, put
itinto the application folder, and update the application configuration file
(PersonApp.DynamicRepository.Ul.exe.config). Thereisno needtorecompile the application itself.

[Enumerable, [Saveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 20

Late Binding

Thisis an example of late binding. We are makingthe decision of what concrete type we use atruntime
rather than compile time. There are both advantages and disadvantages to thisapproach. The big
advantage that we see here isthat we can deploy new Repositories without needingto recompilethe
application—we just need to supply the appropriate assembly and update configuration. The
disadvantage is that we lose the compile time errorchecking. If we try to configure aninvalid assembly
or the typein the assembly does notimplementthe expected interface, we only find out about this at
runtime.

We have good decoupling of ourapplication; we have eliminated the need forthe application to know
aboutall of the different repository types (thisis good). To mitigate the issue of runtime errors we can
make sure that we properly test ourvarious repositories. If each of the repositoriesis unit-tested, then
we know that the repository itself should behave as expected. When we add the seams to our code that
create these separations, then the unittests become much easierto write.

A GenericloC Container

Our factory method is now much more flexible sinceit dynamically loads ourrepository. Butitis limited
to asingletype: IPersonRepository. A usefulloCContainerwillbe able toreturna variety of types.
We can create a containerclass with generics to make this possible. We’ll add this class tothe
RepositoryFactory.cs file (justforconvenience)asasiblingtothe RepositoryFactory class:

public static class Container

{
public static T Resolve<T>() where T : class
{
string configString =
ConfigurationManager.AppSettings|[typeof (T) .ToString ()]
Type resolvedType = Type.GetType (configString);
return Activator.Createlnstance (resolvedType) as T;

}

This code issimilarto our factory method. The primary difference is thatratherthan having
IPersonRepository hard-coded as the type, it uses generics to work with whatevertype we want.
Usingthe generictype, it gets a setting out of configuration (we’llsee thatsettinginjustabit). Thenit
goesthrough the same steps by resolvingthe Type andthen usingthe Activator to createan
instance. You can see that we combined the last 3 lines from our previous method intoasingle
statement that creates the instance, castsitto the appropriate type, and thenreturnsitto the calling
method.

[Enumerable, [Saveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 21

We have to make a few changesto use thisnew Container class. Back in our MainPage.xaml.cs, we
update the call from

IPersonRepository repository = RepositoryFactory.GetRepository();

to

IPersonRepository repository = Container.Resolve<IPersonRepository>();

Here we see the call to the staticmethod Resolve, and we use the interface as the generictype. (Note:
This calling syntax is similarto the syntax used by Castle Windsor and Unity — two full-featured loC
Containers.)

Since the Resolve methodisusingthe generictype to get the configuration settings, we will need to
update the configurationaswell. Our“key” needs to be updated to the fully-qualified type name:

<add key="PersonRepository.Interface.IPersonRepository"
value="PersonRepository.CSV.CSVRepository, PersonRepository.CSV,
Version=1.0.0.0, Culture=neutral"/>

Now, our loC containeris able to resolve any number of different types; we just need to add the
appropriate configuration entries.

Nota Full IoC Container
Again, thisisa “low budget” Inversion of Control container. Some features of full loC containersinclude
objectlifetime managementand discovery.

Object lifetime management has to do with how container-requested objects are managed. For
example, the container can be configured toreturn a new instance each time (whichis what our sample
does), orit can be configured toinstantiate an object once, keep track of it, and then return that
instance with subsequentrequests. The containerwould also manage whenthe instances are
destroyed.

Discoveryisthe ability forthe containerto automatically figure out what objects are available without
specificconfiguration foreach type. Asone example,the containercould scanthe assembliesina
specified folder (this could be the application folder ora separate folder designed to hold dynamically-
loaded objects). Here’s how that would work in our sample: first, we no longer have the configuration
entry with the fully-qualified type name. Instead, the container would scan the assemblies and catalog
the types (such as cracking open the Repository.CSV.dll and finding the CSVRepositorytype that
implements IPersonRepository). Then,whenthe applicationrequestsan IPersonRepository, it
wouldreturnan instance of the type thatit automatically discovered. Note:thisassumesthatwe only
have a single assemblyinthe folder with typesthatimplement IpersonRepository. If we had
multiple types, then we would need additional information to decide which type to return.

[Enumerable, [Saveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 22

Doesthissound like alot of work? Itis. Thisis why we usually reach fora fully-implemented container
(builtby someone else) when we are interested in using the Inversion of Control pattern.

Dependency Injection

Now that we’ve seen how we can do late-binding with our low-budget loC container, | need to mention
that there is much a betterapproach for complex applications: using Dependency Injection. We've
intentionally kept the examples here simple so that we can focus on the benefits we get out of using
Interfaces. Butthere are several DI patterns (such as Constructor Injection and Property Injection) that
allow you to configure a DI container at application start up and then have all of the dependencies (such
as our repository) automaticallyinjected into the classes that use them. Thisisa cleanerway of
separating the responsibilities of each class.

Dependency Injection isamuch biggertopic(butthe topicbecomes much easiertounderstand once
you have a good understanding of Interfaces and Abstract Classes). If you wantto delve furtherinto
Dependency Injection, | would highly recommend picking up a copy of Dependency Injection in .NET by
Mark Seemann. Itisa great resource forlearninghow to properly use Dependency Injection and also
providesagood overview of various |oC/DI containers that are available.

Unit Testing

We have decoupled ourapplication fromthe repository implementation. This has the effectof addinga
“seam” to our code where we can easily swap repository implementationsinand out. Thisisgreat for
unittesting. With our current design, we can easily create a “fake” repository that returns hard-coded
data. Thisway, we could have a test that targets a specificfunction of ourapplication without worrying
about potential problemsinthe repository (such as adatabase being offline ora file notbeing
available). These items can be isolated and tested separately. Since they are decoupled, itisless likely
that problems with one areawill affect the others. The downloadable code containsa
“PersonRepository.Fake” project that you can add to the solution and to experiment with.

As mentioned earlier, we can also unit test our repository implementations to make sure that they
behave as expected. Thisis especiallyimportant when using late -binding since the errors only show up
at runtime. By having comprehensive testsin place, we reduce the likelihood of runtime errors.

Deciding Between an Interface and an Abstract Class

Now that we’ve gone through severalsamples, we have a pretty good idea how interfaces work and
how we can use them. But everythingwe did with oursamples could also be done with an abstract
class. So how do we decide whichone touse? There are no hard and fast rules, buthere are a few tips
to help decide.

Shared Implementation

One way to help decide is to ask how much code (if any) will be shared between the implementing
classes. Inourrepository example, there is no code shared between the implementations. Inthatcase,
we can leantowards usingan interface. If we have methods with commonimplementation, thenwe

[Enumerable, [Saveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 23

might wantto consideran abstract class. That way, we can putthe sharedimplementationintothe
common class ratherthan havingto copy and paste code into each implementation.

Frameworks

Often, if we want to use a third-party framework with ourapplication (such as CSLA for business
objects), we need to descend application classes from the classesinthe framework. Inthistype of
situation, we wantto considerusinginterfaces forourcode. If we were to use abstract classes, we may
run into problems since each class can only descend from a single base class. We would have todecide
whetherto descend from our abstract class or the framework class.

.NET Framework Examples

Abstract classes and interfaces are both used extensivelyin the .NET framework. Forexample, the
MembershipProviderand RoleProvider (part of the ASP.NET security model) are abstract classes. Much
of the shared implementation that hooks into the ASP.NET frameworkisincluded in the base class. But
a numberof methods and properties, such as GetAllUsers, are abstract and must be implementedinthe
descendant classes.

On the otherhand, ADO.NET usesinterfaces extensively, such as the IDbConnection interface that
represents an open connectiontoadatasource. The datasource could be Microsoft SQL Server, Oracle,
Sybase, ODBC, XML, or any otherdatasource. Asyou can imagine, thereislittle (if any) code thatcan be
shared when openingaconnection with any of these sources.

General Advice

Because of the advantages and disadvantages of each, a general recommendation is to tend toward
usinginterfaces. This helps mitigate issues that may arise due to the single-inheritance model. Then
later we can determine if an abstract class will make more sense (such as if we have shared code across
implementations).

More Places to Explore

The repository patternis only one example of how interfaces can help us decouple ourcode. This
example shows how we can open up our application to extension by otherdevelopers. All adeveloper
needstodo isto create a classthat implements ourinterface, and he can extend the applicationto use
any data storage imaginable. By usinginterfacestohandle ourrepository, we’ve been able to decouple
our main applicationfromthe datastore. The applicationitself does not care where the data comes
fromor how it gets fetched orsaved. Thishas decoupled ourcode and made it more extensible and
testable.

Many otherdesign patterns are conducive to interface implementation. Thisisonly a starting point;
there are plenty of avenuesto explore from here.

Happy coding!

[Enumerable, [Saveable, IDontGetlt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 24

