
DI Why?
Getting a Grip on Dependency Injection

Jeremy Clark

www.jeremybytes.com

@jeremybytes



What Is Dependency Injection?

• Dependency Injection is a software design pattern that 
allows a choice of component to be made at run-time 
rather than compile time.

• Wikipedia 2012

©Jeremy Clark 2017



What Is Dependency Injection?

• Dependency injection is a software design pattern that 
allows the removal of hard-coded dependencies and 
makes it possible to change them, whether at run-time or 
compile-time.

• Wikipedia 2013

©Jeremy Clark 2017



What Is Dependency Injection?

• Dependency injection is a software design pattern that 
implements inversion of control and allows a program 
design to follow the dependency inversion principle. The 
term was coined by Martin Fowler.

• Wikipedia 2014

©Jeremy Clark 2017



What Is Dependency Injection?

• In software engineering, dependency injection is a software design 
pattern that implements inversion of control for software libraries, 
where the caller delegates to an external framework the control flow 
of discovering and importing a service or software module. 
Dependency injection allows a program design to follow the 
dependency inversion principle where modules are loosely coupled. 
With dependency injection, the client part of a program which uses a 
module or service doesn't need to know all its details, and typically 
the module can be replaced by another one of similar characteristics 
without altering the client.

• Wikipedia 2015

©Jeremy Clark 2017



What Is Dependency Injection?

• In software engineering, dependency injection is a software design pattern 
that implements inversion of control for resolving dependencies. A 
dependency is an object that can be used (a service). An injection is the 
passing of a dependency to a dependent object (a client) that would use it. 
The service is made part of the client's state.[1] Passing the service to the client, 
rather than allowing a client to build or find the service, is the fundamental 
requirement of the pattern.

• Wikipedia 2016

©Jeremy Clark 2017



What Is Dependency Injection?

• Dependency Injection is a set of software design principles 
and patterns that enable us to develop loosely coupled 
code.

• Mark Seeman

©Jeremy Clark 2017



Dependency Injection 
in .NET

• Mark Seeman

©Jeremy Clark 2017



Primary Benefits

• Extensibility*

• Late Binding

• Parallel Development

• Maintainability

• Testability*

• Adherence to S.O.L.I.D. Design Principles.
*Topics we’ll touch on today

©Jeremy Clark 2017



Dependency Injection Concepts

• DI Design Patterns

• Constructor Injection*

• Property Injection*

• Method Injection

• Ambient Context

• Service Locator

• Object Composition*

• DI Containers

• Unity

• Castle Windsor

• Ninject*

• Autofac

• StructureMap

• Spring.NET

• and others
*Topics we’ll touch on today

©Jeremy Clark 2017



Application Layers

• MainWindow

View

• MainWindowViewModel

View Model

• PersonServiceRepository

Repository

• PersonService

Service

©Jeremy Clark 2017



Look At The Code

©Jeremy Clark 2017



Tight Coupling

• MainWindow

View

• MainWindowViewModel

View Model

• PersonServiceRepository

Repository

• PersonService

Service

©Jeremy Clark 2017



Creating a Caching Repository

©Jeremy Clark 2017



Loose(r) Coupling

• MainWindow

View

• MainWindowViewModel

View Model

• PersonServiceRepository

Repository

• PersonService

Service

©Jeremy Clark 2017



Dependency Injection Concepts

• DI Design Patterns

• Constructor Injection*

• Property Injection*

• Method Injection

• Ambient Context

• Service Locator

• Object Composition*

• DI Containers

• Unity

• Castle Windsor

• Ninject*

• Autofac

• StructureMap

• Spring.NET

• and others
*Topics we’ll touch on today

©Jeremy Clark 2017



Primary Benefits

• Extensibility*

• Late Binding

• Parallel Development

• Maintainability

• Testability*

• Adherence to S.O.L.I.D. Design Principles.
*Topics we’ll touch on today

©Jeremy Clark 2017





Thank You!

Jeremy Clark

• http://www.jeremybytes.com

• jeremy@jeremybytes.com

• @jeremybytes


