
SHIELDS UP!
DEFENSIVE CODING IN C#

Presented by Jeremy Clark
www.jeremybytes.com



Understand

Common 

Problems

Code for

the Real World

Robust and 

Effective Code



THROWING EXCEPTIONS

• Throw specific exceptions, such as

• ArgumentNullException

• NullReferenceException

• AccessViolationException

• Avoid throwing “Exception”

©Jeremy Clark 2014



THROWING “EXCEPTION”

©Jeremy Clark 2014



THROWING EXCEPTIONS

• Throw specific exceptions, such as

• ArgumentNullException

• NullReferenceException

• AccessViolationException

• Avoid throwing “Exception”

• Be aware that exceptions are “expensive”

©Jeremy Clark 2014



CATCHING EXCEPTIONS

• Use try blocks where exceptions could occur

• try/catch where you can handle the exception

• try/finally where you cannot handle the exception

• Catch specific exceptions

• Only catch an exception if you an do something with it

• Have a global exception handler (for everything else)

©Jeremy Clark 2014



RETHROWING EXCEPTIONS

©Jeremy Clark 2014

VS



RETHROWING EXCEPTIONS

• Creates a new Exception object

• Resets the stack trace

• We don’t know where the original exception was 
generated

©Jeremy Clark 2014



RETHROWING EXCEPTIONS

• Rethrows the same exception object

• The stack trace (and other properties) are retained

• We can look at the stack trace to find the exception 
origin

©Jeremy Clark 2014



©Jeremy Clark 2014



INPUT VALIDATION

• Validate parameters on public methods

• Null checking

• IsNullOrWhiteSpace() for strings

• Range checking

• IsDefined() for enumerations

• Parse vs. TryParse

• Parse will throw an exception on failure

• TryParse returns “false” on failure (no exception)

©Jeremy Clark 2014



DEMO: 
INPUT VALIDATION & 
EXCEPTION HANDLING

©Jeremy Clark 2014



SQL INJECTION

©Jeremy Clark 2014

User input that is 
executed as a SQL 

command.



DEMO: 
SQL INJECTION

©Jeremy Clark 2014



http://xkcd.com/327/

©Jeremy Clark 2014



PREVENTING SQL 
INJECTION

• Parameterized Queries

• Stored Procedures (which are parameterized)

• ORM Frameworks are built to prevent SQL injection

• Entity Framework

• Nhibernate

• Many others

©Jeremy Clark 2014



DEMO: 
PARAMETERIZED SQL

©Jeremy Clark 2014



HACKABLE URIS

• Entry Points

• URL query strings

• “Pretty” URLs with 
parameters
(like ASP.NET MVC)

• REST Services

• WebAPI

• Other technologies that 
use HTTP as the main 
form of passing 
parameters

©Jeremy Clark 2014



DEMO: 
HACKABLE URIS

©Jeremy Clark 2014



SECURING URIS

• User Validation

• For user-specific data, make sure the data user matches 
the requesting user.

• Authorization

• For other controlled data, check security settings to make 
sure the user is authorized

©Jeremy Clark 2014



DEMO: 
SECURING URIS

©Jeremy Clark 2014



UNIT TESTING

©Jeremy Clark 2014

Unit Tests are proof 
that your code 

actually does what 
you think it does.



UNIT TESTING

• Testing small pieces of code

• Usually on the method level

• Testing in isolation

• Eliminate outside interactions that might break the test

• Reduce the number of objects needed to run the test

• Note: We still need Integration Testing

• Testing that the pieces all work together

©Jeremy Clark 2014



OTHER TOPICS

• IDisposable

• If an object implements IDisposable, make sure you call 
“Dispose()” or wrap the object in a “using” statement

• Event Handlers

• Disconnect event handlers when you’re done with them

• A connected event handler prevents Garbage 
Collection

• Alternately, use a weak-reference event handling 
process, such as the EventAggregator class from 
Microsoft p&p

©Jeremy Clark 2014



©Jeremy Clark 2014



SHIELDS UP!
DEFENSIVE CODING IN C#

Presented by Jeremy Clark
www.jeremybytes.com


