
ABSTRACT ART
GETTING ABSTRACTION “JUST RIGHT”

Presented by Jeremy Clark
www.jeremybytes.com



Geek & Poke – http://goo.gl/ifd53l

A Good Design

is like

A Piece of Art

@jeremybytes



ABSTRACTION IS AWESOME!

Maintain TestExtend

@jeremybytes



ABSTRACTION IS AWFUL!

Complexity
Debugging

Difficulty
Confusion

Frustration
@jeremybytes



https://archive.org/details/goldilocks_and_the_three_bears



GOLDILOCKS THE DEVELOPER

Too Much
Abstraction

Too Little
Abstraction

Just Right

@jeremybytes



TWO TYPES OF DEVELOPERS

Over-Abstractor

Under-Abstractor

@jeremybytes



• “We’ll have a good use for this in the future.”

• Overly Complex

• Difficult to Maintain

Over-Abstractor

@jeremybytes



A Good Architect 
Leaves A Footprint

Geek & Poke: http://goo.gl/B4uXa3

@jeremybytes



• “Let’s keep things simple.”

• Rigid

• Difficult to Maintain

Under-Abstractor

@jeremybytes



COMMON PROBLEM

• “We’ll have a good use for this in the future.”

• Overly Complex

• Difficult to Maintain

Over-Abstractor

• “Let’s keep things simple.”

• Rigid

• Difficult to Maintain

Under-Abstractor

@jeremybytes



The Default State Quiz

Who Are You?



Let’s build a plug-in architecture…

Awesome!

Let’s do it.

Maybe we 

should look at

compile-time

options.



We need to share a value between 

modules…

I’ll create an

object state

manager.

Let’s use a

global variable.



How should we do the UI?

Here’s a new

JavaScript

framework.

Let’s use the

same framework

we did last time.



Pull data from a database…

ORMs are 

awesome!

SELECT *

FROM Customers

WHERE ID = [@id]



We need an object instance…

var logger =

DIContainer

.Resolve<ILogger>()

var logger =

new FileLogger()



Neither answer is right or wrong. The 
correct response is “It depends.”

—Jeremy’s Standard Response



Let’s build a plug-in architecture…

Awesome!

Let’s do it.

Maybe we 

should look at

compile-time

options.



We need to share a value between 

modules…

I’ll create an

object state

manager.

Let’s use a

global variable.



How should we do the UI?

Here’s a new

JavaScript

framework.

Let’s use the

same framework

we did last time.



Pull data from a database…

ORMs are 

awesome!

SELECT *

FROM Customers

WHERE ID = [@id]



We need an object instance…

var logger =

DIContainer

.Resolve<ILogger>()

var logger =

new FileLogger()



BE HONEST WITH YOURSELF

Too Much
Abstraction

Too Little
Abstraction

Just Right

@jeremybytes



WHO AM I?

•Hello. My name is Jeremy, 
and I’m an Under-Abstractor.

Under-Abstractor

“Keep Things Obvious”
“Don’t Be Tricky”



REPORTING APPLICATION



THE PENDULUM EFFECT

Over-
Abstraction

Under-
Abstraction

Just Right



THOSE AROUND YOU

•Jeff loved to build components.

•He liked to create code for re-use.

•He thought of all possible scenarios.

Over-Abstractor



A SYMBIOTIC RELATIONSHIP

The 
Over-Abstractor 

helps the 
Under-Abstractor 

get things 
Just Right

The 
Under-Abstractor 

helps the
Over-Abstractor

get things 
Just Right



Know Your…

Environment

Self

Tools

Infrastructure

Business

Team



THE PENDULUM EFFECT

Over-
Abstraction

Under-
Abstraction

Just Right

@jeremybytes



VARIOUS DATA SOURCES

MongoDB

Amazon AWS

Microsoft Azure

WebAPI

CSV SOAP Service

Microsoft SQL Server

Oracle

JSON Hadoop

@jeremybytes



PLUGGABLE REPOSITORIES

@jeremybytes

Service

Repository

CSV File

Repository

SQL Database

Repository

Application



@jeremybytes



DRY

• Don’t Repeat Yourself

@jeremybytes

Under-Abstractor



DON’T REPEAT YOURSELF

Consolidate 
Similar 
Code

Avoid 
Copy/Paste

Copy/Pasta
Spaghetti 

Code

@jeremybytes



SoC

• Separation of Concerns

@jeremybytes

Under-Abstractor



SINGLE RESPONSIBILITY PRINCIPLE

Complements 
Separation of 

Concerns

The “S” in 
S.O.L.I.D.

A class should 
have only one 

reason to 
change

A class should
do one thing 

(and do it well)

@jeremybytes



YAGNI 

• You Ain’t Gonna Need It

• (You Aren’t Going to Need It)

@jeremybytes

Over-Abstractor



MORAL OF YAGNI

• Code for the features you have now

• Add abstraction as you need it

• Don’t add abstraction based on speculation

We still think about the future, 
but we don’t implement it yet.

@jeremybytes



KISS 

• Keep It Simple, Stupid

• (Keep It Short & Simple)

• (Keep It Simple & Straightfoward)

@jeremybytes

Over-Abstractor



DDIY 

• Don’t Do It Yourself

@jeremybytes

Over-Abstractor

Under-Abstractor



DDIY

•Over-Abstractors like to build 
things to solve specific problems

Over-Abstractor

•Under-Abstractors shy away from 
external frameworks and libraries

Under-Abstractor

@jeremybytes



EXAMPLES

Dependency Injection

• Unity, MEF, Ninject, Autofac, StructureMap, Spring.NET

Unit Testing Framework

• MSTest, NUnit, TypeMock Isolator, xUnit.net, Approval Tests

Mocking

• Moq, NSubstitute, RhinoMocks, FakeItEasy, JustMock

Logging

• log4net, Semantic Logging Application Block (SLAB)

UI Framework

• Prism, Angular, React

@jeremybytes



ABSTRACTION IS AWESOME
& AWFUL

Maintain TestExtend

Complexity
Debugging

Difficulty
Confusion

@jeremybytes



THE GOLDILOCKS PRINCIPLE

Too Much
Abstraction

Too Little
Abstraction

Just Right

@jeremybytes



GETTING THINGS RIGHT

DRY

• Don’t Repeat 
Yourself

SoC

• Separation of 
Concerns

YAGNI

• You Ain’t
Gonna Need It

KISS

• Keep It Short & 
Simple

DDIY

• Don’t Do It 
Yourself

@jeremybytes



THANK YOU!

Jeremy Clark

•http://www.jeremybytes.com

• jeremy@jeremybytes.com

•@jeremybytes

@jeremybytes


