
Using Abstraction for Good

(and not evil)



Program to an abstraction, not a concrete type.
Programming Best Practice



Just a Starting Point

Be sure to check your 

surroundings before 

following any 

recommendations.



Abstraction is Awesome!

Maintain TestExtend



Abstraction is Awful!

Frustration

Complexity
Difficulty 

Debugging
Confusion



Abstract Class vs Interface

Abstract Class
 May contain implementation code

 A class may only descend from a 

single base class

 Members contain access modifiers

 May contain fields, properties, 

constructors, destructors, methods, 

events and indexers

Interface
 May not contain implementation 

code

 A class may implement any number 

of interfaces

 Members are automatically public

 May contain properties, methods, 

events, and indexers (not fields, 

constructors or destructors)



Abstraction Can…

Add flexibility

 Code that bends in the face of change

Add separation

 Code that doesn’t have to deal with implementation details

Add extensibility

 Code that adapts to new functionality



a href=“…”

 http://www.jeremybytes.com/Demos.aspx#INT

 IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET

 Full walkthrough of interfaces

 http://www.jeremybytes.com/Demos.aspx#AA

 Abstract Art: Getting Things “Just Right”

 Collection of articles talking about the pros and cons of abstraction

 http://www.jeremybytes.com/Demos.aspx#PR

 Practical Reflect in .NET

 A more detailed description of the Rules Engine example

http://www.jeremybytes.com/Demos.aspx#INT
http://www.jeremybytes.com/Demos.aspx#AA
http://www.jeremybytes.com/Demos.aspx#PR


Using Abstraction for Good

Next Up: Dependency Injection


