
T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 1

T, Earl Grey, Hot: Generics in .NET

An overview of generics by JeremyBytes.com

Overview
Generics give us a way to increase type-safety of our types and methods while still keeping them

extensible and reusable. Most C# developers have worked with generics to a certain extent, and we’ve

seen the “T” in angle brackets (or “of T” in parentheses for VB.NET) in a number of classes in the base

class library (like List<T>). But generics go way beyond adding flexibility to built-in types; we can use

them to create our own classes and methods that take advantage of this great framework feature.

We got generics way back in .NET 2.0, and they really were transformational at the time (now we're

hopefully used to seeing them). By making our code type-safe, we are more likely to catch errors at

compile time and also avoid strange behavior that might come from casting objects to different types.

Our code also becomes more extensible -- it can work with types that it may not have been originally

intended to work with.

Generics also offer us some performance enhancements (which, granted, seem fairly minor when

talking about the processing resources of modern devices) by reducing casting calls and

boxing/unboxing of value types.

We’ll take a look at how generics are used in the base class library (by comparing generic and non-

generic collections), and then we’ll add generics to our own code (interfaces, classes, and methods) to

take advantage of these benefits. Along the way, we’ll learn some details (such as “default” and generic

constraints) that can make our code useful in a variety of situations.

What are Generics?
To start, here’s a definition of Generics (from the MSDN documentation):

Generics are classes, structures, interfaces, and methods that have placeholders (type

parameters) for one or more of the types that they store or use. A generic collection class might

use a type parameter as a placeholder for the type of objects that it stores; the type parameters

appear as the types of its fields and the parameter types of its methods. A generic method might

use its type parameter as the type of its return value or as the type of one of its formal

parameters.

Let’s break this down. First, “Generics are classes, structures, interfaces and methods…” This means

that we can apply generics to types (class / struct / interface) and methods. We cannot apply generics

to other parts of our type (such as properties, indexers, and events); however, we can use the generic

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 2

parameters declared by the enclosing type. We’ll take a look at what this means in just a bit (when we

talk about generic interfaces).

Next, “that have placeholders (type parameters) for one or more of the types that they store or use.”

The placeholder is the “<T>” (although it doesn’t have to be “T” as we’ll see). When we use the type or

method, we substitute the actual type that we want to work with – whether it is integer, string,

DateTime, or some custom type that we have built.

Finally, the definition references generic collections and methods. We’ll see both of these as we work

through some samples. So let’s get started with some generic collections!

Generic and Non-Generic Collections
We’ll start by comparing generic and non-generic collections that are offered in the .NET base class

library (BCL). You can download the source code for the application from the website:

http://www.jeremybytes.com/Downloads.aspx. The sample code we’ll be looking at is built using .NET 4

and Visual Studio 2010 (however, everything will work with .NET 3.5 or .NET 4.5). The download

consists of a single solution that has multiple projects. Two versions are included: a “starter” solution (if

you want to follow along) as well as the “completed” code. To start with, we’ll be using just 2 of the

projects; we’ll add features from the others as we get deeper into the topic.

The Generics.UI project is a WPF application that contains our user interface. It includes

MainWindow.xaml with the following UI:

4 buttons and a list box – if you’re interested in the layout of the application, you can take a look at

“Metrocizing XAML” (Parts 1 and 2) available here: http://www.jeremybytes.com/Downloads.aspx#MX.

(Note: this was written while “Metro” was still being used as the name of the UI style.) The set of

http://www.jeremybytes.com/Downloads.aspx
http://www.jeremybytes.com/Downloads.aspx#MX

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 3

articles describes the styles, data templates, and control templates (in the App.xaml file) and also

touches on Converters.cs.

If we look at the code-behind (MainPage.xaml.cs), we find the following placeholders:

 public partial class MainWindow : Window

 {

 public MainWindow()

 {

 InitializeComponent();

 }

 private void NonGenericButton_Click(object sender, RoutedEventArgs e)

 {

 }

 private void GenericButton_Click(object sender, RoutedEventArgs e)

 {

 }

 private void RepositoryButton_Click(object sender, RoutedEventArgs e)

 {

 }

 private void ClearButton_Click(object sender, RoutedEventArgs e)

 {

 PersonListBox.Items.Clear();

 }

 }

The only code we have so far (ClearButton_Click) clears out our list box.

Switching over to the Generics.Common project, we find a Person class which we will use as our

primary data type. It consists of 4 public properties:

 public class Person

 {

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public DateTime StartDate { get; set; }

 public int Rating { get; set; }

 }

Finally, we have a People static class that provides us with 2 static methods, one that returns a non-

generic collection (ArrayList) and one that returns a generic collection (List<Person>).

 public static class People

 {

 public static ArrayList GetNonGenericPeople() ...

 public static List<Person> GetGenericPeople() ...

 }

These methods simply generate some hard-coded data; you can look at the code for details.

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 4

A Non-Generic Collection
Before .NET 2.0, we had the ArrayList class. The ArrayList is a step above using a standard array

because it handles dynamically increasing the size of the collection as required. In addition, it

implements the IList interface which gives us methods like Add, Remove, Contains, IndexOf, and

others that make the collection easy to work with in code.

But what can you put into an ArrayList? The ArrayList stores the items as type object. Since

pretty much everything in .NET descends from object, this means we can put whatever we want into the

list. In our case, we are putting Person objects into the list (but the list doesn’t know that).

So, let’s use our non-generic ArrayList. We’ll add the following code to our

NonGenericButton_Click handler in MainWindow.xaml.cs:

 private void NonGenericButton_Click(object sender, RoutedEventArgs e)

 {

 PersonListBox.Items.Clear();

 ArrayList people = People.GetNonGenericPeople();

 foreach (object person in people)

 PersonListBox.Items.Add(person);

 }

First, we clear the list box. Then we call the static GetNonGenericPeople method to get our

populated ArrayList. Then we use a foreach loop to populate the list box. Notice that our foreach

loop uses the type object for the collection item (person). As a note, we could use the var keyword

in our foreach loop (instead of object), but I wanted to make it clear that we are getting an object

from our collection. If we run the application and click the “Non-Generic List” button, we get the

following:

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 5

Now, you might be wondering how the UI can properly layout the object items in the UI – after all, it

seems like it really wants to lay out Person items. The answer to this lies in the WPF data binding

model. It turns out that the data-binding model is extremely forgiving. When we data bind to the

FirstName property, the UI simply looks for that property on the item and binds to it if it finds it. If it

doesn’t find that property, then it ignores the binding. Since our object has the expected properties,

the layout works just fine.

A Generic Collection
When generics were added to .NET 2.0, we also got a number of generic collections. Today, we’re using

List<T> (pronounced “List of T” when you say this out loud). As noted earlier, VB.NET uses the syntax

List(Of T) which, curiously enough, is also pronounced “List of T”.

List<T> also implements the IList interface, so we get the same methods (Add, Remove, Contains,

IndexOf, and others) that we have in ArrayList. The big difference is the generic parameter: T.

When we use this class, we substitute T with whatever type we want. This constrains the list so that it

can only accept items of that particular type (we’ll see what this means in just a moment).

Since we are working with items of type Person, we declare List<Person>.

So, let’s use our generic List<T>. We’ll add the following code to our GenericButton_Click

handler in MainWindow.xaml.cs:

 private void GenericButton_Click(object sender, RoutedEventArgs e)

 {

 PersonListBox.Items.Clear();

 List<Person> people = People.GetGenericPeople();

 foreach (Person person in people)

 PersonListBox.Items.Add(person);

 }

This code is very similar to our non-generic code. The primary difference is that our foreach loop is

getting Person objects from the collection. As you might imagine, our output is similar to what we had

above:

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 6

What’s the Difference?
Okay, so you’re probably thinking, “We’ve got two code blocks that do exactly the same thing. So

what?” But this is where things get interesting.

We mentioned that type-safety is a big advantage of generics. First, let’s see how our non-generic

version handles different types.

Let’s add a few lines to our NonGenericButton_Click method:

 private void NonGenericButton_Click(object sender, RoutedEventArgs e)

 {

 PersonListBox.Items.Clear();

 ArrayList people = People.GetNonGenericPeople();

 people.Add("Hello");

 people.Add(15);

 foreach (object person in people)

 PersonListBox.Items.Add(person);

 }

Here, we’re adding two more objects to our list. The first is a string, and the second is an integer. Since

ArrayList works with the object type, it accepts these new items. This code compiles just fine. But

we get some strange behavior at runtime:

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 7

Notice the 2 empty boxes at the bottom of the list. These are our string and integer items. We can

check the output window in Visual Studio to see the binding errors:

As noted earlier, the data binding mechanism in WPF is very forgiving. If it doesn’t find a property that it

is looking for, then it ignores it (after logging it) and moves on. The output window is a great way to

debug data binding issues with a WPF application. Since none of the required properties were found on

the string or integer objects, we get two empty items in our UI.

To fix the UI, we might want to ensure that only Person objects get to the list box. To do this, we could

update our code as follows:

 private void NonGenericButton_Click(object sender, RoutedEventArgs e)

 {

 PersonListBox.Items.Clear();

 ArrayList people = People.GetNonGenericPeople();

 people.Add("Hello");

 people.Add(15);

 foreach (Person person in people)

 PersonListBox.Items.Add(person);

 }

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 8

Here, we’ve changed the foreach loop from object to Person. This has the effect of doing a cast to

type Person for each item coming out of the collection.

If we run the code now, we end up with a runtime error:

We could further modify our code to try to protect from this error. But at this point, we’re just throwing

good code after bad. The much better solution is to use the generic list.

Let’s go back to our generic list and try the following code:

 private void GenericButton_Click(object sender, RoutedEventArgs e)

 {

 PersonListBox.Items.Clear();

 List<Person> people = People.GetGenericPeople();

 people.Add("Hello");

 people.Add(15);

 foreach (Person person in people)

 PersonListBox.Items.Add(person);

 }

This time, we get a compile-time error:

“The best overloaded method match for

'System.Collections.Generic.List<Generics.Common.Person>.Add(Generics.Common.Person)' has

some invalid arguments.”

The generic list protects us from adding incompatible objects to our list. So rather than getting runtime

errors, we get compile time errors. Which would you rather have?

(Note: be sure to remove or comment out these two lines of code before continuing.)

Boxing and Unboxing
Using a generic collection over a non-generic collection can also result in performance improvements.

This has to do with how value types are handled in .NET. A value type (struct) is stored on the stack (i.e.,

the value is stored in the quickly accessible stack memory). A reference type (class) is stored on the

heap (i.e., the value is stored in heap memory, and a reference to that memory location is stored on the

stack).

Many of the primitive types in .NET are value types. This includes integer, Boolean, character,

DateTime, and several other types. All types in .NET (whether value types or reference types) descend

from Object. As such, we can cast a value type to an object. However, when we cast a value type to

an object, the value is “boxed” as a reference type, meaning that the value is put into heap memory and

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 9

a reference placed on the stack. When we cast the object back to a value type, it is “unboxed”,

meaning that the value is pulled off the heap and placed into the stack.

This process of boxing and unboxing incurs some overhead. If we use an ArrayList (or other non-

generic collection) to store value types (such as integers or other numeric types), each time we place a

value into the list, it is boxed; and each time we pull a value from the list, it is unboxed. For collections

with many members, the result is that a large percentage of the processing time is spent on the

boxing/unboxing procedure.

When we use a generic collection with a value type (such as List<int>), we do not have to go through

the boxing/unboxing process. The result is that generic collections of value types run much more

efficiently than their non-generic counterparts.

Reuse and Extensibility
So, we’ve seen how generics can add type-safety to our code. This helps us catch errors at compile-time

instead of runtime and makes our code more robust. So far, we have just used classes that are built into

the .NET BCL. We can use generics in our own classes to get the same advantages. Today, we’ll look at

how generics can help with reuse and extensibility.

The Repository Pattern
If you’re writing business applications, you probably have a mechanism set up for CRUD (Create, Read,

Update, Delete) operations. The Repository Pattern allows us to build a common interface for these

operations so that our application is not tightly coupled to the underlying data store. If you want more

information on the Repository Pattern and using it to create different repositories (for a SQL database, a

CSV file, and a web service), see “IEnumerable, ISaveable, IDontGetIt: Understanding .NET Interfaces”

(available for download here: http://www.jeremybytes.com/Downloads.aspx#INT).

To take a look at generics, we’ll use the repository pattern, but we’ll restrict ourselves to a single

implementation for simplicity.

A Person Repository
In the Generics.Common project, we have a folder for interfaces. Let’s take a look at

IPersonRepository to see how the repository pattern works.

 public interface IPersonRepository

 {

 IEnumerable<Person> GetPeople();

 Person GetPerson(string lastName);

 void AddPerson(Person newPerson);

 void UpdatePerson(string lastName, Person updatedPerson);

 void DeletePerson(string lastName);

http://www.jeremybytes.com/Downloads.aspx#INT

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 10

 void UpdatePeople(IEnumerable<Person> updatedPeople);

 }

We have a number of methods specified here. The first, (GetPeople) allows us to get a list of all people

in our data store. This is the method that we’ll be using in our code. The other methods let us get an

individual person and to add, update, and delete person objects. The last method lets us replace our

entire collection with a new one.

Notice that we are using the Person type in various places (as parameters and return values). Another

thing to note is that we are using string lastName as our primary key – the way that we locate an

existing item.

A Person Repository Implementation

We’re working with a web service to handle all of our actual data store operations. These files are

located in the Person.Service project. This is a standard WCF service that exposes a number of

methods. We will use these methods in our repository implementation.

The repository itself is located in the Generics.Repository project (the PersonService Repository

class in the PersonRepository folder). Here’s the implementation (some methods have been

truncated for readability):

 public class PersonServiceRepository : IPersonRepository

 {

 private PersonServiceClient proxy;

 public PersonServiceRepository()

 {

 proxy = new PersonServiceClient();

 }

 public IEnumerable<Person> GetPeople()

 {

 return proxy.GetPeople();

 }

 public Person GetPerson(string lastName)...

 {

 return proxy.GetPerson(lastName);

 }

 public void AddPerson(Person newPerson)...

 public void UpdatePerson(string lastName, Person updatedPerson)...

 public void DeletePerson(string lastName)...

 public void UpdatePeople(IEnumerable<Person> updatedPeople)...

 }

This PersonServiceRepository class implements IPersonRepository by including all of the

methods from the interface. The actual implementation is quite simple in this case because we are

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 11

passing the call through to the web service. (Check “IEnumerable, ISaveable, IDontGetIt” (mentioned

above) for some examples of repositories that use different data stores.

A Product Repository
Now that we’ve seen a repository interface for the Person class, let’s think about a repository for the

Product class. Product.cs contains our Product type:

 public class Product

 {

 public int ProductId { get; set; }

 public string ProductName { get; set; }

 public string Category { get; set; }

 }

And the repository in IProductRepository.cs:

 public interface IProductRepository

 {

 IEnumerable<Product> GetProducts();

 Product GetProduct(int productId);

 void AddProduct(Product newProduct);

 void UpdateProduct(int productId, Product updatedProduct);

 void DeleteProduct(int productId);

 void UpdateProducts(IEnumerable<Product> updatedProducts);

 }

We have methods that are very similar to those in the Person repository. The differences include the

method names (AddProduct vs. AddPerson), the item type (Product vs. Person), and the primary

key (int productId vs. string lastName).

As you can imagine, if we had more types (Customer, Order, Payment, etc.) we would end up with quite

a few very similar interfaces. Wouldn’t it be great if we could combine these into a single re-usable

interface? That’s exactly how generics can help us.

A Generic Repository
Since the only differences between the repositories are the method names, item type, and primary key,

we can figure out a way to combine these separate interfaces into a single generic interface.

The method names are easy. Instead of “GetPeople” and “GetProducts” we use a more generalized

“GetItems”. We’ll extend this to the other method names as well.

But what about the types? Let’s go back to the generics definition that we started with.

Generics are classes, structures, interfaces, and methods that have placeholders (type

parameters) for one or more of the types that they store or use.

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 12

For the types that need to vary, we have the item type (Person or Product) and the primary key

(string or integer). Let’s look at the code and then examine it more closely (in Generics.Common

IRepository.cs):

 public interface IRepository<T, TKey>

 {

 IEnumerable<T> GetItems();

 T GetItem(TKey key);

 void AddItem(T newItem);

 void UpdateItem(TKey key, T updatedItem);

 void DeleteItem(TKey key);

 void UpdateItems(IEnumerable<T> updatedItems);

 }

First, notice our interface declaration: IRepository<T, TKey>. This specifies that we will have 2 type

parameters. T is our item type; TKey is the type of our primary key.

A quick note about naming type parameters: T (for Type) is used by convention if there is a solitary type

parameter or as the primary type parameter (if there are multiple parameters). This naming convention

is not required, but most developers are used to seeing T. For additional parameters, we try to use

meaningful names but still prefix with the letter T (like our TKey example). This is to add readability and

hopefully to give the developers using our generic type a clue to how to use it properly.

If we compare IRepository<T, TKey> to IPersonRepository, we see that all usages of “Person”

have been replaced by “T” and all usages of “string lastName” have been replaced by “TKey key”.

So what does an implementation look like?

A Generic Repository Implementation

We already have an implementation for the Person repository in our Generics.Repository project

(called GenericPersonServiceRepository):

 public class GenericPersonServiceRepository : IRepository<Person, string>

 {

 private PersonServiceClient proxy;

 public IEnumerable<Person> GetItems()

 {

 return proxy.GetPeople();

 }

 public Person GetItem(string lastName)

 {

 return proxy.GetPerson(lastName);

 }

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 13

 public void AddItem(Person newPerson)...

 public void UpdateItem(string lastName, Person updatedPerson)...

 public void DeleteItem(string lastName)...

 public void UpdateItems(IEnumerable<Person> updatedPeople)...

 }

First, notice how we have declared the interface: IRepository<Person, string>. This is how we

substitute in the types that are important for this particular repository. Everywhere we saw “T” in the

interface, we have “Person”; and everywhere we saw “TKey”, we have “string”.

Next, notice the names of the method parameters. Even though the interface specified generic names

like “key” and “updatedItem”, we have used “lastName” and “updatedPerson” for clarity in our

class. This is a feature of interfaces: the method signatures need to match (meaning the parameter

type(s) and return type) but the actual parameter names can be whatever we like.

The great thing is that we can now use exactly the same interface for our Product repository.

Another Generic Repository

In our Generics.Repository project, the GenericProductServiceRepository is still an empty

class:

 public class GenericProductServiceRepository

 {

 }

Let’s start by adding the interface declaration:

 public class GenericProductServiceRepository : IRepository<Product, int>

 {

 }

This time, we specified “Product” as our item type and “int” as our primary key type. Now, we can

right-click on “IRepository” and select “Implement Interface” and then “Implement Interface” again,

and Visual Studio will stub out all of our methods:

 public class GenericProductServiceRepository : IRepository<Product, int>

 {

 public IEnumerable<Product> GetItems()

 {

 throw new NotImplementedException();

 }

 public Product GetItem(int key)

 {

 throw new NotImplementedException();

 }

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 14

 public void AddItem(Product newItem)...

 public void UpdateItem(int key, Product updatedItem)...

 public void DeleteItem(int key)...

 public void UpdateItems(IEnumerable<Product> updatedItems)...

 }

You can see that the implementation includes the types in all the right places. At this point, we can

rename the method parameters if we like (but it’s not necessary).

All we would need to do is complete the implementation by replacing the “throw new

NotImplementedException()” with our own code. The implementation is not included in the

sample project, but would look very similar to the Person repository.

Benefits
As you can see, we now have two custom repositories that share the same generic interface definition.

If we had other types (Customer, Order, Payment, etc.), they could all reuse this same interface. The

main benefit of all repositories using the same interface is that all of the application code that accesses

the repositories will do so in the same way.

Regardless of the type of object we are retrieving, we will always use the same method name

(GetItems), and we get back a strongly-typed collection. This makes our application code consistent in

appearance and functionality.

Generic Methods
So far, we have looked at adding type parameters to classes. But we can also use type parameters to

create generic methods. Let’s start by looking at a non-generic example.

A Static Factory
For our specific application, we want to use late-binding – meaning, we don’t want the application to

know what concrete repository we are using. We want the application code to only reference the

repository through the interface. Then we will create a factory method that will instantiate a concrete

repository based on configuration information. (For a more detailed discussion of this, see

“IEnumerable, ISaveable, IDontGetIt: Understanding .NET Intefaces” (here’s the link again for

convenience: http://www.jeremybytes.com/Downloads.aspx#INT).

Back in Generics.Common, we have a folder for our factories. Let’s look at RepositoryFactory.cs:

http://www.jeremybytes.com/Downloads.aspx#INT

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 15

 public static class RepositoryFactory

 {

 public static IPersonRepository GetPersonRepository()

 {

 string configString =

 ConfigurationManager.AppSettings["IPersonRepository"];

 Type resolvedType = Type.GetType(configString);

 object obj = Activator.CreateInstance(resolvedType);

 IPersonRepository rep = obj as IPersonRepository;

 return rep;

 }

 public static IProductRepository GetProductRepository()

 {

 string configString =

 ConfigurationManager.AppSettings["IProductRepository"];

 Type resolvedType = Type.GetType(configString);

 object obj = Activator.CreateInstance(resolvedType);

 IProductRepository rep = obj as IProductRepository;

 return rep;

 }

 }

This static class contains two static methods – one to get the Person repository and one to get the

Product repository. To figure out what concrete type to use, it references the app.config file. Here

are those settings (in the Generics.UI project):

 <!-- Resolved by RepositoryFactory.GetRepository -->

 <add key="IPersonRepository"

 value="Generics.Repository.PersonRepository.PersonServiceRepository,

Generics.Repository, Version=1.0.0.0, Culture=neutral"/>

 <add key="IProductRepository"

value="Generics.Repository.ProductRepository.ProductServiceRepository,

Generics.Repository, Version=1.0.0.0, Culture=neutral"/>

Note: the line-breaks are a little different if you look at the actual config file. So, how does the factory

method work? Let’s take it one line at a time.

 string configString =

 ConfigurationManager.AppSettings["IPersonRepository"];

This gets the “value” setting from the configuration file. The value is the fully-qualified type name of

the class we want to use. This includes the namespace and type-name

(…PersonServiceRepository), the assembly name (Generics.Repository), plus the version and

culture of the assembly. (If you are using strongly-named assemblies, then the public key would be

included here, too.)

 Type resolvedType = Type.GetType(configString);

This resolves the configuration string into an actual PersonServiceRepository type that we can use.

 object obj = Activator.CreateInstance(resolvedType);

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 16

This uses the Activator to instantiate our selected type. In this case, it will create a

PersonServiceRepository object. The return type of this method is of type object.

 IPersonRepository rep = obj as IPersonRepository;

The next line casts the object created by the Activator into the type we are expecting – the interface

type IPersonRepository.

 return rep;

Finally, we return our fully instantiated IPersonRepository.

Using the Factory Method
Let’s actually put this factory method to work. In our Generics.UI project, we’ll flip back to the

MainPage.xaml.cs file and implement our last event handler: RepositoryButton_Click.

 private void RepositoryButton_Click(object sender, RoutedEventArgs e)

 {

 IPersonRepository repo = RepositoryFactory.GetPersonRepository();

 var people = repo.GetPeople();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

 }

First, we use the RepositoryFactory to get our Person repository. Then we use the repository to get

the list of people. Then we loop through the people and populate the list box. Since we are using an

interface reference (IPersonRepository) instead of a concrete type, we can change to a different

concrete repository type (such as one that uses a SQL server) without needing to change this code.

Our output is just as we would expect:

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 17

One thing to note: our Repository factory is using the non-generic IPersonRepository, but we could

have just as easily have written it to use the generic IRepository. The result would be the same.

A Generic Factory
If we go back to our RepositoryFactory and compare the static methods GetPersonRepository

and GetProductRepository, we see that most of the code is identical. The two differences include

the type we are creating (IPersonRepository vs. IProductRepository) and the key we are using

for the configuration file. This sounds like something we can easily refactor.

Just like with our interface, we can use a generic type parameter to consolidate this code into a single

method. In this case, we’ll be using a type parameter with a method instead of a class.

A few naming differences: this code was originally presented as low-budget inversion of control (IoC) in

“IEnumerable, ISaveable, IDontGetIt” (which has been mentioned several times so far – maybe you

should go read this). Since the generic factory method is a lot like an IoC container, we use a syntax that

is similar to the pre-built containers that you can use (and you should use one of these rather than

building your own – if you want more information on these containers, see “Dependency Injection: A

Practical Introduction” also available on the website).

So, instead of naming the class “RepositoryFactory”, we have named it “Container” (but it is still a

static class). And instead of naming the method “Get…Repository”, we have named it “Resolve”.

Let’s look at the code in Container.cs of the Generics.Common project:

 public static class Container

 {

 public static T Resolve<T>() where T : class

 {

 string configString =

 ConfigurationManager.AppSettings[typeof(T).ToString()];

 Type resolvedType = Type.GetType(configString);

 object obj = Activator.CreateInstance(resolvedType);

 T rep = obj as T;

 return rep;

 }

 }

Notice that our Resolve method takes a type parameter (T) and uses that as the return type (we’ll come

back to the “where” constraint in just a moment).

The method body is similar. Anywhere we had the type IPersonRepository, we now have a T.

We’ve had to replace the string reference to the AppSettings with something we can get from the

type parameter (we’ll come back to this in just a moment). When we look at the rest of the methods,

there is a straight swap between IPersonRepository and T.

Using the Generic Factory
Let’s update our application so that it uses the generic factory method. The revised

RepositoryButton_Click looks like this:

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 18

 private void RepositoryButton_Click(object sender, RoutedEventArgs e)

 {

 var repo = Container.Resolve<IRepository<Person,string>>();

 var people = repo.GetItems();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

 }

When calling Container.Resolve, we need to pass in the type we want to work with. In our case, we

want to use the generic repository which is based on IRepository<Person, string> (for the

Person class). This syntax looks a bit odd since we have nested generics, but once you see this a few

times it will start to look normal.

What doesn’t look normal is the updated configuration file. Remember that our factory method is using

“typeof(T).ToString()”. Our type is IRepository<Person,string>, but when we call

“ToString()” on this, we get an interesting output:

Generics.Common.Interface.IRepository`2[Generics.Common.Person,System.String]

First we have the namespace. Then we have IRepository`2 which tells us that we have two type

parameters. Inside the brackets, we have the fully-qualified names of the types we specified. So, our

entire entry for the configuration item looks like this (again, line-breaks are different from the actual

configuration file):

<add

key="Generics.Common.Interface.IRepository`2[Generics.Common.Person,System.St

ring]"

value="Generics.Repository.PersonRepository.GenericPersonServiceRepository,

Generics.Repository, Version=1.0.0.0, Culture=neutral"/>

The key is different (so that we can extract it from the generic type parameter), but the value is the

same as above. One change is that we specify GenericPersonServiceRepository (instead of

PersonServiceRepository), but the rest of the assembly information is the same.

When we run the application, we get the expected output:

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 19

Generic Constraints
Let’s head back to our generic factory method:

 public static T Resolve<T>() where T : class

So, what does the “where” mean? This is a generic constraint. This limits what can be used as the

generic type parameter. In this case, we specify that T needs to be a class (a reference type). We

need this constraint for the Activator.CreateInstance method. This method call is expecting an

object with a default constructor. A value type (such as a struct) does not have a default constructor.

If we were to pass a value type to CreateInstance, the call would fail.

Using the where keyword, we can specify a number of constraints:

 class – a reference type

 struct – a value type

 new() – a type with a parameterless constructor

 base class – a type that descends from a specified class

 interface – a type that implements a specified interface

We can even combine these (with commas) to specify multiple constraints. If we have more than one

type parameter, we can specify different constraints for each type.

When looking at this list, you might wonder why we didn’t use the new() constraint rather than the

class constraint since we noted that CreateMethod just needs a parameterless constructor. The

answer is that we are also using the as keyword to cast the object to our type, and as will only operate

on a class.

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 20

By using these constraints, we make sure that if we have any special requirements on our type

parameters, the compiler (and developer) will know about it. If we were to use a value type parameter

with our factory method (instead of the required reference type), then the compiler would throw an

error because of the constraint. Without the constraint, we could use a value type, compile successfully,

and then get a runtime error at the CreateInstance call. So, constraints give us a chance to add extra

type-safety to our generic code.

One last thing before we leave our generic factory. We can actually combine the last three lines of our

method. This changes the code from this:

 public static T Resolve<T>() where T : class

 {

 string configString =

 ConfigurationManager.AppSettings[typeof(T).ToString()];

 Type resolvedType = Type.GetType(configString);

 object obj = Activator.CreateInstance(resolvedType);

 T rep = obj as T;

 return rep;

 }

To this:

 public static T Resolve<T>() where T : class

 {

 string configString =

 ConfigurationManager.AppSettings[typeof(T).ToString()];

 Type resolvedType = Type.GetType(configString);

 return Activator.CreateInstance(resolvedType) as T;

 }

In the last statement, we create the instance, cast it to T, and then return the value all in one statement.

Our code is now more compact but a bit more difficult to debug if something goes wrong.

Default Keyword
One last thing we should mention regarding generics is the “default” keyword. Since the type

parameters can be either reference types or value types (assuming that we do not have a constraint), it

may be difficult if we need to “reset” a value.

For example, let’s say that we have a generic class with a single type parameter (T). The class contains a

local variable of type T, let’s say “T _currentItem”. In the constructor, we want to reset this

parameter. But how do we do that? We can’t just set it to null because if it is a value type (like

integer), then the assignment to null will fail.

This is where default comes in. We use it like this:

 _currentItem = default;

T, Earl Grey, Hot: Generics in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 21

If _currentItem is a reference type, then it is set to null. If it is a value type, then it is set to bitwise

zero.

Wrap Up
Generics are an extremely powerful feature in .NET. We have seen how generics can add type-safety to

our code, they can make our code re-usable and extensible, and they can move a number of errors from

runtime to compile-time. There are still plenty of other areas to explore in the generics world. If you

are pining for more, you can look up covariance and contravariance in generics. This lets us control

whether we can use descendent types or parent types when the generic parameter types are specified.

Start taking full advantage of generics and you can see these benefits in your own code.

Happy coding!

