
IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 1

IEnumerable, ISaveable, IDontGetIt:
Interfaces in .NET

An overview of interfaces and abstraction by JeremyBytes.com

Overview
Interfaces in .NET allow us to program at an appropriate level of abstraction. They allow us to create

and use functionality in an object even if we do not know the object’s concrete class type. With

appropriate use of interfaces, we can build code that is extensible and loosely coupled.

First, we’ll take a look at some definitions – what interfaces are and how they compare to abstract

classes (and concrete classes). Then we’ll take a quick look at an advantage to programming to an

interface rather than to a concrete type (in this case, IEnumerable). Next, we’ll create our own interface

(an object repository) and create an extensible and testable application. Finally, we’ll remove compile-

time constraints by dynamically loading an implementation of our interface. So, let’s get started!

What is an Interface?
The first thing we need to do is define what an interface is. Usually, when we hear “interface” we think

about user interfaces – the controls and design that the user sees on the screen. But the interfaces we

are looking at here are in the code – allowing us to specify functionality that is supported by a class.

From the Visual Studio documentation: “Interfaces describe a group of related functions that can belong

to any class or struct.”

The easiest way to think of an interface is as a contract. When a class implements an interface, it is

committing to implementing a specific set of functions that the programmer can rely on. Let’s take a

look at some samples to help us understand this better.

A Simple Sample
We’ll start with a completed console application that contains samples of a concrete class, an abstract

class, and an interface. You can download the source code for the application here:

http://www.jeremybytes.com/Downloads.aspx. The sample code we’ll be looking at is built using .NET 4

and Visual Studio 2010 (however, everything will work with .NET 3.5 and Visual Studio 2008). The

download includes several different solutions (some of which share projects). Each solution exists as a

starter application (if you want to follow along) and the completed code.

We’ll start by taking a look at the SimpleSample.sln solution.

http://www.jeremybytes.com/Downloads.aspx

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 2

A Concrete Class
The Polygons project contains several different objects. We’ll start by look at the

ConcreteRegularPolygon class.

 public class ConcreteRegularPolygon

 {

 public int NumSides { get; set; }

 public int SideLength { get; set; }

 public virtual double GetArea()

 {

 throw new NotImplementedException();

 }

 public double GetPerimeter()

 {

 return SideLength * NumSides;

 }

 public ConcreteRegularPolygon(int numSides, int sideLength)

 {

 NumSides = numSides;

 SideLength = sideLength;

 }

 }

This is a standard class that contains 2 properties, 2 methods, and a constructor. This is a simple object

that represents a polygon that has the same length for each side and contains as many sides as we like.

One thing to notice is that we are using automatic properties (for NumSides and SideLength). The

syntax that we see above is shorthand for a fully implemented property such as this:

 private int _numSides;

 public int NumSides

 {

 get { return _numSides; }

 set { _numSides = value; }

 }

In this sample, we have a private field (_numSides) that holds the actual value. The getter and setter of

the property (NumSides) interacts with the field.

Note: We may want to use the full property syntax if we need to add additional logic to the get

or set (such as data validation or change notification). If we don’t need to add code, then we can

use the automatic property syntax to make our code a bit more compact.

The GetPerimeter method of our class simply multiplies the length of each side by the total number of

sides; this gives us the distance around the polygon. Notice that the GetArea method throws a

NotImplementedException. This is because the calculation for the area of a polygon depends on the

number of sides; each shape has a different formula. We’ve made this method virtual and expect

that a descendent class will override this method to provide a useful implementation. We’ll see a

sample of this in use in just a bit.

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 3

An Abstract Class
An abstract class is a class that has one or more elements marked as abstract (nice use of recursion,

huh?). An abstract method or property is just declared in the class; it is not actually implemented.

Because of this, an abstract class cannot be instantiated. You must create a descendent class that

implements the abstract members before an object can be instantiated in the code.

Here is the AbstractRegularPolygon from the sample project:

 public abstract class AbstractRegularPolygon

 {

 public int NumSides { get; set; }

 public int SideLength { get; set; }

 public abstract double GetArea();

 public double GetPerimeter()

 {

 return SideLength * NumSides;

 }

 public AbstractRegularPolygon(int numSides, int sideLength)

 {

 NumSides = numSides;

 SideLength = sideLength;

 }

 }

Like our concrete class, this class contains 2 properties, 2 methods, and a constructor. But there are a

couple of differences. First, the class itself is marked as abstract. Next, the GetArea method is also

marked as abstract and does not contain an implementation. Because of this, we cannot instantiate

the AbstractRegularPolygon class. We will need to create a descendent class that implements this

method. We’ll see this in just a bit.

A purely abstract class is a class that does not have any implementation code at all, only declarations.

You don’t meet purely abstract classes in the real world; an interface is usually a better choice.

An Interface
An interface is similar to a purely abstract class, in that it contains only declarations and no

implementation code. But there are some key items that differentiate abstract classes and interfaces.

The sample project contains an IRegularPolygon interface.

 public interface IRegularPolygon

 {

 int NumSides { get; set; }

 int SideLength { get; set; }

 double GetArea();

 double GetPerimeter();

 }

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 4

The interface contains 2 properties and 2 methods. Here are a few things to note. First, we use the

interface keyword (instead of class or struct). Next, there are no access modifiers on the properties

or methods. For interfaces, all members are public. This makes sense; since an interface is a contract

between a class and a programmer, the members of that contract must be visible to both parties.

Finally, there is no constructor.

Important note: we have a bit of unfortunate syntax here. If you look at the properties of the

interface, they look very similar to the automatic properties that we have in the classes. But they

aren’t. The properties in an interface are only declarations, not implementations. So, although

these look like automatic properties, they are really just a placeholder. The properties must be

implemented in the class in order to fulfill the contract (as we’ll see in just a bit).

Class Implementation
Now that we’ve seen the base classes and the interface, let’s take a look at using these items. The

implementation is in the Polygons.ConsoleApp project.

Concrete Class Implementation

First, the ConcreteSquare descends from the concrete class:

 class ConcreteSquare : ConcreteRegularPolygon

 {

 public ConcreteSquare(int sideLength) :

 base(4, sideLength) { }

 public override double GetArea()

 {

 return SideLength * SideLength;

 }

 }

The implementation is pretty straight-forward. This class descends from ConcreteRegularPolygon.

The constructor simply calls the base class constructor, and there is an override of the GetArea

method to implement the code. The rest of the implementation comes from the base class. No

surprises here.

It is important to note that there is no requirement that we implement the GetArea method; if we

wanted, we could remove this method and rely on the base class implementation (which throws the

exception). If we remove the GetArea method, our code will still compile.

Abstract Class Implementation

Next, the AbstractTriangle descends from the abstract class. This implementation is similar to the

previous class:

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 5

 public class AbstractTriangle : AbstractRegularPolygon

 {

 public AbstractTriangle(int sideLength) :

 base(3, sideLength) { }

 public override double GetArea()

 {

 return SideLength * SideLength * Math.Sqrt(3) / 4;

 }

 }

The class descends from AbstractRegularPolygon. The constructor calls the base class constructor,

and there is an override of the GetArea method. The rest of the implementation (the properties and

GetPerimeter) comes from the base class.

The difference here is that we must implement the GetArea method. If we do not implement this

method, the compiler will throw an error.

Interface Implementation

Finally, the InterfaceOctagon implements the interface:

 public class InterfaceOctagon : IRegularPolygon

 {

 public InterfaceOctagon(int sideLength)

 {

 NumSides = 8;

 SideLength = sideLength;

 }

 public int NumSides { get; set; }

 public int SideLength { get; set; }

 public double GetArea()

 {

 return SideLength * SideLength * (2 + 2 * Math.Sqrt(2));

 }

 public double GetPerimeter()

 {

 return SideLength * NumSides;

 }

 }

First, I want to note the terminology. InterfaceOctagon implements the IRegularPolygon

interface; it does not descend from the interface. Since the base class is not specified, the class implicitly

descends from Object.

When we look at the code, we see a fully implemented constructor (because there is no base

constructor). We also see implementations for both of the properties and for both of the methods.

Note again the unfortunate syntax. Even though the properties look just like the ones in the

interface, these are actually automatic properties (like we saw in our concrete class, above). This

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 6

qualifies them as an implementation of those properties, and as such, fulfills the interface

contract.

If we do not provide implementations for all 4 members, then we will get a compiler error. Again, think

of the interface as a contract between the class and the programmer – by implementing an interface,

the class commits to having each of those members. A bit later, we’ll take a look at some shortcuts that

Visual Studio provides to make implementing interfaces easier.

What’s the Difference?
So here’s the big question: what’s the difference between a purely abstract class and an interface? On

the surface, they seem to both behave the same. However, there are key differences:

Abstract Classes Interfaces

My contain implementation code (non-abstract
members).

May not contain any implementation code.
Interfaces are limited to declarations only.

A class may only descend from a single base class
(single inheritance).

A class may implement multiple interfaces.

Members contain access modifiers (public, private,
protected, etc.).

Members do not contain access modifiers. All
members are automatically public.

May contain fields, properties, constructors,
destructors, methods, events, and indexers.

May contain properties, methods, events, and
indexers. May not contain fields, constructors, or
destructors.

C# allows for single-inheritance only; meaning, that a class can descend from one (and only one) base

class. There is no way for a class to descend from 2 different parent classes. Some people have cited

this as a shortcoming in C# languages (after all, C++ allows for multiple-inheritance). But in practical

usage, multiple-inheritance can lead to unanticipated issues (but that’s a topic for another discussion).

The solution is interfaces. A class can descend from only a single base class, but it can implement as

many interfaces as it needs. If we take a look at some of the classes in the .NET help system, we will see

many examples of classes that implement multiple interfaces. As an example, here is the definition for

List<T>:

 public class List<T> : IList<T>, ICollection<T>,

 IEnumerable<T>, IList, ICollection, IEnumerable

In this case, there is no declared base type (so the base type is Object), but there are several generic

and non-generic interfaces that are implemented. This means that when we use the List<T> class, we

can depend on it having IEnumerable functionality. This will be important to us in our next example.

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 7

Programming to an Abstraction
Among the extensive list of best practices, we often hear that we should program to an abstraction

rather than a concrete implementation. In order to see what this means and why it’s important, let’s

take a look at another solution: IEnumerableSample.sln.

The Projects
The solution contains 3 projects: the People.Service project defines a WCF service that provides our

data; we will be using the GetPeople method. The PersonRepository.Interface project will be

more important in the next solution; for now, it’s just used because it contains the declaration of the

Person class (the class type of our sample data). We’ll be spending most of our time in the

IEnumerable.UI project.

The IEnumerable.UI project is a simple WPF application. The MainWindow.xaml contains a list box

that will hold our data and 3 buttons – 2 to fetch data and 1 to clear the list box.

The project also contains a Converters.cs file that contains a number of value converters that are

used in the display. If you are interested in the XAML and value converters in this project, you can look

up the Introduction to Data Templates and Value Converters in Silverlight demo and sample code on the

website: http://www.jeremybytes.com/Downloads.aspx (note: this works perfectly well in WPF as well).

The code-behind the MainWindow has stubs for the button event handlers. We will be filling these in

shortly.

Note: We are not doing a fully layered / abstracted application here in order to keep the example

simple and allow us to focus on the core parts. In a production application, the recommendation

is to separate the model, application logic, and UI (such as is common when implementing the

Model-View-ViewModel pattern).

Adding the Service Reference
We’ll start by adding a reference to the WCF Service. Here are the steps:

1. In the Solution Explorer, right-click on the project IEnumerable.UI, and select “Add Service

Reference”.

2. In the dialog, click the “Discover” button. This will look for any services that are included in the

solution. PersonService.svc should come up.

3. In the “Namespace” box, type “MyService”.

4. While we’re on this screen, take note of the “Advanced” button. Don’t click it now; we’ll be

looking it at later on.

5. Click the “OK” button.

The Concrete Implementation
At the top of the MainWindow.xaml.cs file, add the following using statement:

using IEnumerable.UI.MyService;

http://www.jeremybytes.com/Downloads.aspx

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 8

We’ll start by implementing the ConcreteFetchButton_Click method. The idea behind this

method is that we are coding to a concrete class (the class type that is returned by the WCF service).

We’ll use this to populate the list box. Here’s the code:

private void ConcreteFetchButton_Click(object sender, RoutedEventArgs e)

{

 Person[] people;

 var proxy = new PersonServiceClient();

 people = proxy.GetPeople();

 PersonListBox.Items.Clear();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

}

In this case, we create a variable which is an array of Person. This is the type that is returned by the

GetPeople method of the service. Then we create an instance of the service and populate our

variable. Finally, we loop through the items and add them to the list box. Here is the running

application after clicking the “Concrete Class” button:

The Abstract Implementation
Now that we’ve seen the concrete implementation, let’s take a step back and think about what we really

need here. We have a collection of Person objects, and we are using a foreach loop to add them to a

list box. But it turns out that the actual type of the collection doesn’t really matter to us. All we really

care about is the ability to use foreach. If we check the documentation, we find that in order to use

foreach, we simply need a class that implements IEnumerable or IEnumerable<T>. So, for the

InterfaceFetchButton_Click method, we’ll program to the abstraction (the interface) rather than

the concrete class:

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 9

private void InterfaceFetchButton_Click(object sender, RoutedEventArgs e)

{

 IEnumerable<Person> people;

 var proxy = new PersonServiceClient();

 people = proxy.GetPeople();

 PersonListBox.Items.Clear();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

}

The only difference from the previous method is that our variable now specifies that interface

(IEnumerable<Person>) rather than the concrete class (array of Person). If we run the application,

we get exactly the same results:

So What?
Okay, so we’ve created 2 methods that have the same result. Why should we use the interface? For the

same reason that we program to abstractions: to protect our code from change. Let’s experiment a

little with our application.

In the Solution Explorer, expand the Service References node, right-click on MyService, and select

“Configure Service Reference.”

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 10

Take a look at is the “Collection Type” drop-down. Right now, we can see that it is set to

“System.Array”, with the result that the service method returned an array (Person[]). This is the

default type that we get when we bring in a service using BasicHttpBinding. This default type varies

based on the service type and the programming environment that we are using. But this dialog allows

us to change this. Let’s update it to “System.Collections.Generic.List”; now our service method will

return a List<Person>. As a side note, remember that “Advanced” button from the Add Service

Reference dialog? That takes us to this same screen, so we can set these properties when we initially

add the service to our project.

Now we have a problem. If we try to build the application, we get the following error:

Cannot implicitly convert type

'System.Collections.Generic.List<IEnumberable.UI.MyService.Person>' to

'IEnumberable.UI.MyService.Person[]

In order to get this application to build, we need to change the variable type in the

ConcreteFetchButton_Click method from

 Person[] people;

to

 List<Person> people;

After making this change, our code will compile and run once more.

But the important thing to note is that we do not need to update the InterfaceFetchButton_Click

method. Because we programmed to the abstraction (the IEnumerable interface), we are not affected

by the change of the type coming back from the service. Since almost every collection in .NET

implements the IEnumerable<T> interface, this section of code is robust and resistant to breaking in

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 11

response to this type of change. Granted, this is a very simple example, and there are other ways to

resolve the issue in this scenario (such as with the use of var), but this gives us a good jumping-off point

to look at some more realistic examples.

Using Interfaces in the Real World
Now that we’ve seen the usefulness of programming to an abstraction, let’s take this further. In this

case, we’ll decouple our code by using the Repository pattern. The Repository pattern will allow us to

separate the core of our application from the data storage mechanism.

Note: We are not doing a fully layered / abstracted application here in order to keep the example

simple and allow us to focus on the core parts. In a production application, the recommendation

is to separate the model, application logic, and UI (such as is common when implementing the

Model-View-ViewModel pattern).

In our previous example, we retrieved our data from a WCF service. But what if we wanted to expand

this so that we could retrieve the data from a SQL Server or a CSV file (or any other data store that we

can think of)? If we split things out a bit, we can make our application more extensible.

So let’s take a look at the RepositoryInterface.sln solution.

The Projects
The initial solution contains 3 projects: the People.Service project is the same as from the previous

example and contains a number of methods in a WCF service for us to use. The PersonApp.UI project

is a WPF application that is very similar to the last application; it contains a list box with 3 buttons – one

for each of the data storage types we want to use. The PersonRepository.Interface project

contains the declaration of the Person class and also the repository interface that we are interested in.

This is where we will start.

IPersonRepository
The IPersonRepository.cs file contains the declaration for our repository interface. This contains

the methods that we may want to use to fetch and save data:

 public interface IPersonRepository

 {

 IEnumerable<Person> GetPeople();

 Person GetPerson(string lastName);

 void AddPerson(Person newPerson);

 void UpdatePerson(string lastName, Person updatedPerson);

 void DeletePerson(string lastName);

 void UpdatePeople(IEnumerable<Person> updatedPeople);

 }

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 12

These methods should be pretty self-explanatory. Our samples will be concentrating on GetPeople

(which returns the entire list of Person objects) and GetPerson (which returns a single Person object

based on last name).

As we noted earlier, an interface contains only declarations with no implementation. This particular

interface only has methods, but properties, events, and indexers could be added if we needed them.

Further Exploration: This is an example of the Repository Pattern. This repository interface is

tuned for a specific object type (Person). To make this more flexible, we could update our

repository to use generics (IRepository<T>) and reflect this in the names/types of the

methods.

The WCF Service Repository
Now that we have an interface defined, we need to create a concrete class that implements this

interface. We’ll start with an implementation that uses the WCF Service. To do this, we’ll create a new

project in the solution:

1. In the Solution Explorer, right-click on the solution and select “Add”, then “New Project”.

2. Select “Class Library” as the template.

3. Name the project “PersonRepository.Service”.

4. Right-click on the project, and select “Add Reference”.

5. On the “Projects” tab, select “PersonRepository.Interface”.

6. Right-click on the project, and select “Add Service Reference”.

7. Follow the instructions from the previous sample to add the reference to the PersonService.

8. Rename the “Class1.cs” file to “ServiceRepository.cs”. When prompted, select to rename the

class as well.

Now that we have the basics set up, we can start modifying our code. Add the following to the top of

the ServiceRepository.cs file:

 using PersonRepository.Interface;

 using PersonRepository.Service.MyService;

Add the interface to the class declaration:

 public class ServiceRepository : IPersonRepository

 {

 }

If we try to build the application now, we will get errors because our class says that it implements

IPersonRepository, but it doesn’t actually implement any of the members. We could add the

methods one at a time or copy them from the interface definition, but Visual Studio gives us a much

easier way.

If click somewhere in the word “IPersonRepository” (to put the cursor there), you will see the first letter

is underlined with a small blue box. This box is a clue that Visual Studio wants to help us out. If we

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 13

press the Ctrl key and “.”, we get a pop-up menu. One of the items is “Implement interface

‘IPersonRepository’”. If we press enter, then Visual Studio stubs out all of the interface members for us.

Note: we can get the same options by right-clicking on “IPersonRepository”. There is also an option to

explicitly implement the interface. This is a more advanced topic that is outside the scope of this

document.

 public class ServiceRepository : IPersonRepository

 {

 public IEnumerable<Person> GetPeople()

 {

 throw new NotImplementedException();

 }

 public Person GetPerson(string lastName)

 {

 throw new NotImplementedException();

 }

 public void AddPerson(Person newPerson)

 {

 throw new NotImplementedException();

 }

 public void UpdatePerson(string lastName, Person updatedPerson)

 {

 throw new NotImplementedException();

 }

 public void DeletePerson(string lastName)

 {

 throw new NotImplementedException();

 }

 public void UpdatePeople(IEnumerable<Person> updatedPeople)

 {

 throw new NotImplementedException();

 }

This makes it extremely easy for us to make sure that we are implementing all of the required members

of the interface. With that in mind we just need to replace the exceptions with our custom code. In this

case, we are connecting to the WCF PersonService that implements these same methods. We’ll add a

constructor that creates the service proxy and then pass through all of the method calls to the service.

Here’s the completed code:

 public class ServiceRepository : IPersonRepository

 {

 private PersonServiceClient proxy;

 public ServiceRepository()

 {

 proxy = new PersonServiceClient();

 }

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 14

 public IEnumerable<Person> GetPeople()

 {

 return proxy.GetPeople();

 }

 public Person GetPerson(string lastName)

 {

 return proxy.GetPerson(lastName);

 }

 public void AddPerson(Person newPerson)

 {

 proxy.AddPerson(newPerson);

 }

 public void UpdatePerson(string lastName, Person updatedPerson)

 {

 proxy.UpdatePerson(lastName, updatedPerson);

 }

 public void DeletePerson(string lastName)

 {

 proxy.DeletePerson(lastName);

 }

 public void UpdatePeople(IEnumerable<Person> updatedPeople)

 {

 proxy.UpdatePeople(updatedPeople.ToArray());

 }

 }

Now we should be able to successfully build our solution. The next step will be to add our new class to

the UI project. Let’s do the following in the PersonApp.UI project.

1. In the Solution Explorer, right-click on “PersonApp.UI” and select “Add Reference”.

2. On the “Projects” tab, select “PersonRepositoy.Service”.

3. Right-click on “PersonApp.UI” and select “Add Service Reference”.

4. Follow the instructions from the previous sample to add the reference to the PersonService.

Add the following to the top of the MainWindow.xaml.cs file:

using PersonRepository.Service;

Now we can implement the ServiceFetchButton_Click method:

 private void ServiceFetchButton_Click(object sender, RoutedEventArgs e)

 {

 IPersonRepository repository = new ServiceRepository();

 PersonListBox.Items.Clear();

 var people = repository.GetPeople();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 15

 MessageBox.Show(string.Format("Repository Type:\n{0}",

 repository.GetType().ToString()));

 }

Notice that we create a variable with the type IPersonRepository. This means that we can assign

any object that implements that interface – in this case, the concrete type is ServiceRepository.

The last statement (the message box) will show us the name of the concrete type. This will help us see

some differences once we implement some more repository classes.

With this in place, we can run the application. Here is the result if we click the Service Repository

button:

The CSV and SQL Repositories
Now that we have one repository implemented, we can take a look at the other two. The good thing is

that these repository classes are already implemented; we just need to add them to the solution.

1. In the Solution Explorer, right-click on the “RepositoryInterface” solution, select “Add”, then

“Existing Project”.

2. Locate “PersonRepository.CSV.csproj” and add it to the solution.

3. Repeat the above steps to add the “PersonRepository.SQL.csproj” project.

4. Right-click on the “PersonApp.UI” project and select “Add Reference”.

5. On the “Projects” tab, select “PersonRepository.CSV” and “PersonRepository.SQL”.

Add the following at the top of the MainWindow.xaml.cs file:

using PersonRepository.CSV;

using PersonRepository.SQL;

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 16

Add the following code for the CSVFetchButton_Click method:

 private void CSVFetchButton_Click(object sender, RoutedEventArgs e)

 {

 IPersonRepository repository = new CSVRepository();

 PersonListBox.Items.Clear();

 var people = repository.GetPeople();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

 MessageBox.Show(string.Format("Repository Type:\n{0}",

 repository.GetType().ToString()));

 }

And add the following code for the SQLFetchButton_Click method:

 private void SQLFetchButton_Click(object sender, RoutedEventArgs e)

 {

 IPersonRepository repository = new SQLRepository();

 PersonListBox.Items.Clear();

 var people = repository.GetPeople();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

 MessageBox.Show(string.Format("Repository Type:\n{0}",

 repository.GetType().ToString()));

 }

Notice that these methods are exactly the same as the method for our ServiceRepository. The only

difference is the class that we “new” up in the first line. (This should also be a clue to us that we should

consider refactoring this code; we’ll do this in just a bit.)

The reason that we can use these classes so interchangeably is that they all implement the same

interface. If we open up the CSVRepository class file and the SQLRepository class file, we will see

that the implementations are wildly different. But since our application is programming to the interface

(IPersonRepository), it is not concerned about these differences. The application only cares about

the contract; because of the interface, the application is assured that each of these classes has a

GetPeople method that can be called.

Now if we run the application, we should see the same results regardless of the button that is clicked.

We can click the “Clear Data” button in between just to make sure that the list box is getting populated

as expected. The MessageBox dialog that pops up shows the type of the repository that was used. This

lets us verify that we are, in fact, getting results from three different repository types.

Refactoring
As mentioned above, we have a danger sign in our application: duplicated code. Let’s start by creating a

factory for our repository. With the Factory Method pattern, we pass the responsibility for instantiating

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 17

a particular type to another method. In this case, we’ll create a static method that will create the proper

repository class based on a parameter. We’ll start by adding a new class:

1. In the Solution Explorer, right-click on the PersonApp.UI project, select “Add”, then “Class”.

2. Name the file “RepositoryFactory.cs”.

3. Add the following using statements:

 using PersonRepository.Interface;

 using PersonRepository.Service;

 using PersonRepository.CSV;

 using PersonRepository.SQL;

Modify the class as follows:

public static class RepositoryFactory

{

 public static IPersonRepository GetRepository(string repositoryType)

 {

 IPersonRepository rep;

 switch (repositoryType)

 {

 case "Service": rep = new ServiceRepository();

 break;

 case "CSV": rep = new CSVRepository();

 break;

 case "SQL": rep = new SQLRepository();

 break;

 default:

 throw new ArgumentException("Invalid Repository Type");

 }

 return rep;

 }

}

Back in MainPage.xaml.cs we’ll add a new method called “FetchData” to hold our common code:

 private void FetchData(string repositoryType)

 {

 IPersonRepository repository =

 RepositoryFactory.GetRepository(repositoryType);

 PersonListBox.Items.Clear();

 var people = repository.GetPeople();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

 MessageBox.Show(string.Format("Repository Type:\n{0}",

 repository.GetType().ToString()));

 }

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 18

Now our button click methods become very simple:

 private void ServiceFetchButton_Click(object sender, RoutedEventArgs e)

 {

 FetchData("Service");

 }

 private void CSVFetchButton_Click(object sender, RoutedEventArgs e)

 {

 FetchData("CSV");

 }

 private void SQLFetchButton_Click(object sender, RoutedEventArgs e)

 {

 FetchData("SQL");

 }

So, what we have now is a shared function (FetchData) which is referencing the IPersonRepository

interface. Something important to note about this method is that it does not know anything about the

concrete classes. All this method cares about is that the GetPeople method is implemented by the

class, and that is guaranteed by the interface. The FetchData method makes a call out to the

RepositoryFactory in order to get an instance of the repository. Again the local method doesn’t

care about the concrete type, only that it implements IPersonRepository.

You can see that our code looks very clean and that we could add additional repository types with very

little effort. There are still a few shortcomings, but we’ll get a little closer with the next example.

Late Binding – Making Decisions at Runtime
One problem with our current application is that it is statically linked. Our main project (PersonApp.UI)

needs to have references to each of the repository classes that we want to use. This means that if we

add a new repository, we need to recompile the application. We want to try to decouple this so that we

can create and deploy new repositories without modifying the application.

To do this, we’ll implement a low-budget version of the Inversion of Control (IoC) pattern. There’s some

confusion between Inversion of Control and Dependency Injection (or Dependency Inversion). In order

to keep things simple, we’ll just use the Wikipedia definition of Inversion of Control:

In software engineering, Inversion of Control (IoC) is an object-oriented programming practice

where the object coupling is bound at run time by an assembler object and is typically not

known at compile time using static analysis.

Based on this definition, here are the basics of the IoC container that we will implement:

1. The application code only references the interface, never the concrete type.

2. When the application needs an instance of a class that implements the interface, it calls out to

the IoC container and asks for it.

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 19

3. The IoC container then decides what class needs to be instantiated (through configuration or

discovery) and then returns the class. This class type is not known at compile time; it is

determined at runtime.

4. The application makes use of the instantiated class.

Note: Most fully-implemented IoC containers also contain some sort of lifetime management of the

objects so that they are not constantly created and destroyed. For our example, we are not

implementing this functionality.

We’re going to update our RepositoryFactory so that it acts as our low-budget IoC container. It won’t

have much functionality, but it will get the job done. The factory will look in the configuration file for

the type and assembly to use. It will then create an instance of that type and return it to the

application.

Let’s start by opening up the DynamicLoadRepositoy.sln.

The Projects
This solution contains 3 projects: the PersonRepository.Interface project is the interface that we

have been dealing with. The PersonApp.DynamicRepository.UI project contains our UI and the

factory. The UI is similar to previous samples except that it only contains 1 fetch button. The

People.Service project has the WCF service. One important thing to note is that the UI project does

not contain a service reference. The only reason the service is included in the solution is so that it will

start up automatically when we run the application through Visual Studio.

Inversion of Control in Action
Let’s start by looking at the MainWindow.xaml.cs file. This will look very similar to where we left the

last project:

 private void FetchButton_Click(object sender, RoutedEventArgs e)

 {

 IPersonRepository repository = RepositoryFactory.GetRepository();

 PersonListBox.Items.Clear();

 var people = repository.GetPeople();

 foreach (var person in people)

 PersonListBox.Items.Add(person);

 MessageBox.Show(string.Format("Repository Type:\n{0}",

 repository.GetType().ToString()));

 }

In the RepositoryFactory.cs file, we see that the factory method has not yet been implemented.

Let’s take a look at the implementation and then walk through the code:

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 20

 public static IPersonRepository GetRepository()

 {

 string typeName = ConfigurationManager.AppSettings["RepositoryType"];

 Type t = Type.GetType(typeName);

 object obj = Activator.CreateInstance(t);

 IPersonRepository rep = obj as IPersonRepository;

 return rep;

 }

This code is a bit more advanced, so don’t worry if you don’t understand all of it right away. The first

step is to get the fully-qualified type name from configuration (app.config). As a sample, the

CSVRepository looks like this:

<add key="RepositoryType" value="PersonRepository.CSV.CSVRepository,

PersonRepository.CSV, Version=1.0.0.0, Culture=neutral"/>

After getting the fully qualified type name, we use it to generate a Type object. Now that we have a

Type object, we can use the Activator class to instantiate a new object. The object generated by

CreateInstance ultimately depends on the app.config. Based on the sample configuration,

CreateInstance will return a CSVRepository instance. Notice here that we just assign it to a variable

of type object. The next step is to cast this to IPersonRepository since that is the return type

required by the method. The “as” statement attempts to cast the object to IPersonRepository; if it

is not successful, then it simply returns null. The last step returns our IPersonRepository to the

calling method.

This is a standard way of dynamically instantiating an object based on a type name. We could shorten

this code a bit (by combining some of the calls and casting), but that makes it a bit more difficult to

understand if you haven’t worked with this type of code before.

There are a couple of other requirements in order for this code to work as expected. First, since the

CSVRepository requires the path to the “People.txt” file, we have an entry for that in the configuration:

<add key="CSVFilePath" value="C:\Users\Jeremy\Documents\Visual Studio

2010\Projects\Interfaces\RunThrough\Interfaces\PersonApp.DynamicRepository.UI

\People.txt"/>

The only other requirement is that the “PersonRepository.CSV” assembly be placed where the

application can find it. In this sample, we have a copy of “PersonRepository.CSV.dll” in the “bin” folder

of our application; but we could also load the assembly into the GAC (Global Assembly Cache).

The sample project contains configuration file entries for the WCF service repository and the SQL

repository. By updating the app.config file, we can determine which repository will be used at run time.

The comments in the configuration file will show you how to use the other repositories. Nothing is

statically hooked together at compile time. Instead, it is decoupled and dynamically loaded at run time.

This means that if we need to deploy another repository type, we just need to build the class library, put

it into the application folder, and update the application configuration file

(PersonApp.DynamicRepository.UI.exe.config). There is no need to recompile the application itself.

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 21

Late Binding

This is an example of late binding. We are making the decision of what concrete type we use at runtime

rather than compile time. There are both advantages and disadvantages to this approach. The big

advantage that we see here is that we can deploy new Repositories without needing to recompile the

application – we just need to supply the appropriate assembly and update configuration. The

disadvantage is that we lose the compile time error checking. If we try to configure an invalid assembly

or the type in the assembly does not implement the expected interface, we only find out about this at

runtime.

We have good decoupling of our application; we have eliminated the need for the application to know

about all of the different repository types (this is good). To mitigate the issue of runtime errors we can

make sure that we properly test our various repositories. If each of the repositories is unit-tested, then

we know that the repository itself should behave as expected. When we add the seams to our code that

create these separations, then the unit tests become much easier to write.

A Generic IoC Container

Our factory method is now much more flexible since it dynamically loads our repository. But it is limited

to a single type: IPersonRepository. A useful IoC Container will be able to return a variety of types.

We can create a container class with generics to make this possible. We’ll add this class to the

RepositoryFactory.cs file (just for convenience) as a sibling to the RepositoryFactory class:

 public static class Container

 {

 public static T Resolve<T>() where T : class

 {

 string configString =

 ConfigurationManager.AppSettings[typeof(T).ToString()];

 Type resolvedType = Type.GetType(configString);

 return Activator.CreateInstance(resolvedType) as T;

 }

 }

This code is similar to our factory method. The primary difference is that rather than having

IPersonRepository hard-coded as the type, it uses generics to work with whatever type we want.

Using the generic type, it gets a setting out of configuration (we’ll see that setting in just a bit). Then it

goes through the same steps by resolving the Type and then using the Activator to create an

instance. You can see that we combined the last 3 lines from our previous method into a single

statement that creates the instance, casts it to the appropriate type, and then returns it to the calling

method.

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 22

We have to make a few changes to use this new Container class. Back in our MainPage.xaml.cs, we

update the call from

 IPersonRepository repository = RepositoryFactory.GetRepository();

to

 IPersonRepository repository = Container.Resolve<IPersonRepository>();

Here we see the call to the static method Resolve, and we use the interface as the generic type. (Note:

This calling syntax is similar to the syntax used by Castle Windsor and Unity – two full-featured IoC

Containers.)

Since the Resolve method is using the generic type to get the configuration settings, we will need to

update the configuration as well. Our “key” needs to be updated to the fully-qualified type name:

 <add key="PersonRepository.Interface.IPersonRepository"

 value="PersonRepository.CSV.CSVRepository, PersonRepository.CSV,

 Version=1.0.0.0, Culture=neutral"/>

Now, our IoC container is able to resolve any number of different types; we just need to add the

appropriate configuration entries.

Not a Full IoC Container

Again, this is a “low budget” Inversion of Control container. Some features of full IoC containers include

object lifetime management and discovery.

Object lifetime management has to do with how container-requested objects are managed. For

example, the container can be configured to return a new instance each time (which is what our sample

does), or it can be configured to instantiate an object once, keep track of it, and then return that

instance with subsequent requests. The container would also manage when the instances are

destroyed.

Discovery is the ability for the container to automatically figure out what objects are available without

specific configuration for each type. As one example, the container could scan the assemblies in a

specified folder (this could be the application folder or a separate folder designed to hold dynamically-

loaded objects). Here’s how that would work in our sample: first, we no longer have the configuration

entry with the fully-qualified type name. Instead, the container would scan the assemblies and catalog

the types (such as cracking open the Repository.CSV.dll and finding the CSVRepository type that

implements IPersonRepository). Then, when the application requests an IPersonRepository, it

would return an instance of the type that it automatically discovered. Note: this assumes that we only

have a single assembly in the folder with types that implement IPersonRepository. If we had

multiple types, then we would need additional information to decide which type to return.

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 23

Does this sound like a lot of work? It is. This is why we usually reach for a fully-implemented container

(built by someone else) when we are interested in using the Inversion of Control pattern.

Dependency Injection

Now that we’ve seen how we can do late-binding with our low-budget IoC container, I need to mention

that there is much a better approach for complex applications: using Dependency Injection. We’ve

intentionally kept the examples here simple so that we can focus on the benefits we get out of using

Interfaces. But there are several DI patterns (such as Constructor Injection and Property Injection) that

allow you to configure a DI container at application start up and then have all of the dependencies (such

as our repository) automatically injected into the classes that use them. This is a cleaner way of

separating the responsibilities of each class.

Dependency Injection is a much bigger topic (but the topic becomes much easier to understand once

you have a good understanding of Interfaces and Abstract Classes). If you want to delve further into

Dependency Injection, I would highly recommend picking up a copy of Dependency Injection in .NET by

Mark Seemann. It is a great resource for learning how to properly use Dependency Injection and also

provides a good overview of various IoC/DI containers that are available.

Unit Testing

We have decoupled our application from the repository implementation. This has the effect of adding a

“seam” to our code where we can easily swap repository implementations in and out. This is great for

unit testing. With our current design, we can easily create a “fake” repository that returns hard-coded

data. This way, we could have a test that targets a specific function of our application without worrying

about potential problems in the repository (such as a database being off line or a file not being

available). These items can be isolated and tested separately. Since they are decoupled, it is less likely

that problems with one area will affect the others. The downloadable code contains a

“PersonRepository.Fake” project that you can add to the solution and to experiment with.

As mentioned earlier, we can also unit test our repository implementations to make sure that they

behave as expected. This is especially important when using late-binding since the errors only show up

at runtime. By having comprehensive tests in place, we reduce the likelihood of runtime errors.

Deciding Between an Interface and an Abstract Class
Now that we’ve gone through several samples, we have a pretty good idea how interfaces work and

how we can use them. But everything we did with our samples could also be done with an abstract

class. So how do we decide which one to use? There are no hard and fast rules, but here are a few tips

to help decide.

Shared Implementation
One way to help decide is to ask how much code (if any) will be shared between the implementing

classes. In our repository example, there is no code shared between the implementations. In that case,

we can lean towards using an interface. If we have methods with common implementation, then we

IEnumerable, ISaveable, IDontGetIt: Interfaces in .NET presented by JeremyBytes.com
©Jeremy Clark 2012 Page 24

might want to consider an abstract class. That way, we can put the shared implementation into the

common class rather than having to copy and paste code into each implementation.

Frameworks
Often, if we want to use a third-party framework with our application (such as CSLA for business

objects), we need to descend application classes from the classes in the framework. In this type of

situation, we want to consider using interfaces for our code. If we were to use abstract classes, we may

run into problems since each class can only descend from a single base class. We would have to decide

whether to descend from our abstract class or the framework class.

.NET Framework Examples
Abstract classes and interfaces are both used extensively in the .NET framework. For example, the

MembershipProvider and RoleProvider (part of the ASP.NET security model) are abstract classes. Much

of the shared implementation that hooks into the ASP.NET framework is included in the base class. But

a number of methods and properties, such as GetAllUsers, are abstract and must be implemented in the

descendant classes.

On the other hand, ADO.NET uses interfaces extensively, such as the IDbConnection interface that

represents an open connection to a datasource. The datasource could be Microsoft SQL Server, Oracle,

Sybase, ODBC, XML, or any other datasource. As you can imagine, there is little (if any) code that can be

shared when opening a connection with any of these sources.

General Advice
Because of the advantages and disadvantages of each, a general recommendation is to tend toward

using interfaces. This helps mitigate issues that may arise due to the single-inheritance model. Then

later we can determine if an abstract class will make more sense (such as if we have shared code across

implementations).

More Places to Explore
The repository pattern is only one example of how interfaces can help us decouple our code. This

example shows how we can open up our application to extension by other developers. All a developer

needs to do is to create a class that implements our interface, and he can extend the application to use

any data storage imaginable. By using interfaces to handle our repository, we’ve been able to decouple

our main application from the data store. The application itself does not care where the data comes

from or how it gets fetched or saved. This has decoupled our code and made it more extensible and

testable.

Many other design patterns are conducive to interface implementation. This is only a starting point;

there are plenty of avenues to explore from here.

Happy coding!

